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A B S T R A C T   

A new approach, Combinational Spectral Band Activation Complexity (CSB-AC), that extracts the neuromuscular 
firing dynamics of surface electromyography (sEMG) signals by applying entropic methods in a multi- 
dimensional fashion by analyzing the signals temporally, spectrally, and intensity dynamics simultaneously is 
presented. The CSB-AC signal processing approach introduces a methodology that highlights that a small amount 
of key fiducial points embedded within the sEMG, 1000x reduction in EMG data, are only needed to show 
statistically significant changes of the neuromuscular firing dynamics. 

CSB-AC was compared to the more generalized sample entropy method to demonstrate physiological differ-
ences between cohorts and baseline mapping between the two measurements. Results indicated significant 
differences between CSB-AC and sample entropy regardless of age groups for tibialis anterior and plantar flexion 
muscles (gastrocnemius medialis, gastrocnemius lateralis, and soleus). Significant differences were found be-
tween older and younger subject groups for the gastrocnemius medialis and soleus with the older adults having 
higher complexity values. CSB-AC produces greater complexity than sample entropy, where this sparser set of 
data holds paramount information for describing neuromuscular firing and should not be ignored. CSB-AC, 
accomplishes this by simultaneously assessing the complexity of sEMG’s time, intensity, and spectral content, 
where latent properties of neuromuscular dynamics within this unique set of sparse sEMG data points are critical 
to characterizing neuromuscular firing.   

1. Introduction 

This paper presents a new signal processing method, Combinational 
Spectral Band Activation Complexity (CSB-AC), which is designed to 
provide insights into the complex nature of modulated firing of muscle 
fibers. This new surface electromyographic (sEMG) approach has the 
potential to further explain changes to the underlying neuromuscular 
dynamics that occur within aging, diseased and injured populations. 
sEMG is the accepted standard for measuring muscle activity [1]; 
however, sEMG produces nonlinear, electrical signals created by the 
superposition of action potentials from hundreds to thousands of motor 

units. Surface electrodes capture magnitude (recruitment) and density 
(firing frequency) of motor units dictated by the electrodes size and 
configuration. The recruitment of motor units and changes in conduc-
tion velocity of the nerve are super-imposed at the surface electrode. 
This superposition convolves the signals between individual motor unit 
activations and their associated spectral properties, making it difficult to 
understand the neuromuscular dynamics involved. The problem of 
deconvolving or demodulating the signal is further complicated by 
standard bi-polar surface electrodes since their distances from the motor 
end plates vary, causing phasic shifts in signal from fibers with the same 
conduction velocities to be super-imposed within the sEMG 

* Corresponding author. 
E-mail addresses: n.napoli@ufl.edu (N.J. Napoli), Anthony.Mixco@colostate.edu (A.R. Mixco), svwooten@mdanderson.org (S.V. Wooten), Jacopetti.marco@aou. 

mo.it (M. Jacopetti), jsignorile@miami.edu (J.F. Signorile).  

Contents lists available at ScienceDirect 

Biomedical Signal Processing and Control 

journal homepage: www.elsevier.com/locate/bspc 

https://doi.org/10.1016/j.bspc.2021.102891 
Received 8 September 2020; Received in revised form 31 May 2021; Accepted 16 June 2021   

mailto:n.napoli@ufl.edu
mailto:Anthony.Mixco@colostate.edu
mailto:svwooten@mdanderson.org
mailto:Jacopetti.marco@aou.mo.it
mailto:Jacopetti.marco@aou.mo.it
mailto:jsignorile@miami.edu
www.sciencedirect.com/science/journal/17468094
https://www.elsevier.com/locate/bspc
https://doi.org/10.1016/j.bspc.2021.102891
https://doi.org/10.1016/j.bspc.2021.102891


measurement. These global complex firing patterns occurring (syn- 
chronously and asynchronously) could be loosely conceptualized as an 
orchestra with instruments playing various frequencies at distinct times 
as dictated by the piece. Therefore, CSB-AC, is designed to demodulate 
the signal by capturing the entropic nature of how frequencies are 
activated as a function of time. 

Prior Work: To address these complexities, researchers have 
developed intricate and costly electrode topology to deconvolve these 
modulated signals [2]; however, these designs require highly expensive 
and complex data acquisition systems, which are not available to the 
average clinician and researcher. From a signal analysis perspective, 
researchers have developed an assortment of signal processing tech-
niques. Tscharner demonstrated that in order to appropriately analyze 
discrete events, an intensity measure was needed that provided time 
resolution that could distinguish between single events, while preser-
ving spectral content [3]. Intensity analysis with non-linearly scaled 
wavelets has also become a common sEMG [4–11] and mechanomyog-
raphy [12–15] analysis technique. Although this intensity measure can 
allow unique comparisons of individual spectral temporal events, there 
is additional information within the sEMG that is not revealed because of 
the signal modulation and sEMG non-linear complexities. Most recently, 
entropic analysis techniques have been used to measure the complexity 
of sEMG [16–20]. 

However, these applied entropy methods strictly analyze the tem-
poral dynamics and capture only non-linear changes as a function of 
time. As there are abrupt non-linear sEMG magnitude changes within 
the time series (which can be attributed to changes in motor unit 
recruitment and conduction velocity), the entropy measurements are 
able to capture and quantify these dynamics [17–20]. When an abrupt 
increases in the magnitude of the sEMG time series occurs, an increase of 
the modulated spectral waveforms (e.g motor unit action potentials, 
conduction velocity. and etc.) are embedded. These embedded spectral 
waveforms that compose the sEMG are not being accounted for using the 
available entropy approaches and the true temporal dynamics of these 
spectral waveforms within the time domain are unknown. Therefore, the 
activation of these spectral waveforms that are modulated go unnoticed 
and unmeasured because they are embedded within the sEMG signal 
(see Fig. 1). 

This raises one fundamental research question about neuromuscular 
firing dynamics that have never been seen before. If we decompose these 
embedded spectral waveforms as a function of time and intensity, does 
the arrival times (using the fiducial marker as the peak intensity) of 
these spectral waveforms during a contraction statistically differentiate 
between two cohorts known to have different neuromuscular firing 

patterns. 
Challenges: 
As discussed earlier, the two components that drive frequency con-

tent within the sEMG can be thought of as sections of an orchestra where 
we have dozens of instruments playing simultaneously. Additionally, as 
sEMG has been described as linearly enveloped Gaussian distribution 
[8], rather than hearing the instruments playing together, instead each 
instrument is playing a different song and all that is heard is noise. 

From a data collection and experimental perspective, sEMG data 
spectra and intensity can be influenced by the type of muscle contrac-
tion. Although isotonic and isokinetic contractions can be appropriate 
when measuring power [21,22], they can affect the sEMG signal nega-
tively as the contractions require the muscles to change length. The rate 
at which the muscle changes length influences the spectra. This can also 
cause additional vibrational noise that could be added to the sEMG 
signal. Furthermore, isokinetic and isotonic contractions have two 
phases, concentric and eccentric, as the muscles begin at rest, go to a 
minimum length, and return to rest. Napoli [8] reported that for the 
vastus lateralis, vastus medialis, and rectus femoris, the concentric 
loading phase had significantly higher intensity levels than the eccentric 
loading phase through multiple frequency bands. 

Insight: Due to spectral modulation that drives the sEMG signal, 
there are no methods that are able to decode a signal collected using a bi- 
polar configuration; however, it may be possible to draw insight from 
these neuromuscular dynamics by quantifying how non-linear temporal 
dynamics change as a function of frequency content of the sEMG signal. 
Again our orchestra analogy can be employed. An orchestra can play 
components of a song, where there is a harmony and a melody. The 
harmony may be composed of many notes (frequency information) and 
the melody is the timing of the notes (timing information). By examining 
the exact instance in time a note (frequency) is played, we can charac-
terize the harmony and melody. However, it is not entirely possible to 
pin-point the exact frequency and the time the notes occur because of 
the Heisenberg uncertainty principle [8]. In addition, a sEMG signal’s 
frequency information can’t be contextually summarized into a band- 
limited frequency (i.e., an exact frequency like a musical note). No 
physical meaning of a sEMG band-limited frequency has ever actually 
been achieved (such as fiber typing with sEMG); however, untenable 
suggestions have been made [23–26]. From this body of work, if arbi-
trary assumptions regarding frequency band information are made, we 
could use these to evaluate a signal’s complex structure based upon 
modulation of the sEMG signal. Such a pseudo-modulation approach can 
then be applied to conditions, physiological cohorts, and demographic 
cohorts that have previously characterized neuromuscular firing 

Fig. 1. This simulated sEMG figure demon-
strates how an sEMG’s intensity (in blue) can 
change over time and how an sEMG can be 
deconvolved into its embedded spectral in-
tensity (SI) bands (in green, red and black). 
The SI bands can be determined through the 
wavelet intensity methodology [3,8] that is 
used in this paper. The sEMG signal’s peak 
intensity occurs when there is maximum 
activation, highlighted with the blue dots. 
However, we observe that as the sEMG signal 
is deconvolved the timing of the activation 
across the SI bands differ temporally. This is 
highlighted with vertical lines that connect 
with the peaks of each of the SI band time 
series. The different activation across the SI 
bands are then hidden within the complete 
“EMG Intensity” waveform.   
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dynamics to understand the advantages and discriminative capacity 
such a method would provide. 

We hypothesize that such an approach can be achieved through three 
milestones: (1) Decomposing the signal into its frequency components as a 
function of time (e.g., the types of musical notes); (2) depicting the activation 
or instance of these frequencies (e.g., the timing of intensity of the musical 
notes); and (3) quantifying the structure and pattern of these neuromuscular 
firing dynamics. The first milestone can be accomplished by applying a 
wavelet intensity analysis to the sEMG signal, which will decompose the 
signal into different frequency bands [3,8]. When the intensity of the 
wavelet band peaks (maximizes), we will assume that to be a time 
specific instance to complete the second milestone. Lastly, the use of 
complexity measurements can provide the framework for quantifying 
the structure of the signal predictability, completing the third milestone. 
The greater the complexity of the signal, the more irregular and un-
predictable the time series will be [17]. Electrophysiological signals 
such as sEMG, EEG, and ECG signals have been analyzed with entropy 
measures [18,27–30] to explain particular changes in complexity of the 
signals. However, using entropy measures such as approximate entropy, 
Shannon entropy, or fuzzy entropy only provide analysis of the time 
domain and ignore the spectral domain. The spectral content is lost 
along with the information held within its medium. However, by 
applying the first and second milestones to the analysis, spectral content 
could be preserved through use of a time–frequency analysis prior to 
examining complexity. With that, more could be learned about the 
signals themselves. Currently, only one paper has reported comparative 
rationale for decomposing the spectral intensity’s activation to charac-
terize neuro-firing, and this was utilized in electroencephalogram to 
characterize cognitive impairments [31]. However, this work merely 
isolates the spectral bands intensities and does not examine the impact 
of how these signals work together in describing neuronal firing. 

From an experimental perspective, we can leverage the known im-
pacts of aging on neuromuscular firing patterns to evaluate such a 
proposed novel algorithm. More specifically, unique patterns from the 
complexity analysis of surface electromyography have been examined 
with aging [30,32–34] indicating that a comparison between younger 
and older adults would be very appropriate for CSB-AC. Aging is a 
natural process that affects energy distribution into different frequency 
bands [35–43]. Specifically, decreases in muscle strength, power, and 
control occur as a result of aging [35,43–45]. 

2. Methods 

2.1. Study design and data collection 

2.1.1. Participants 
Thirty participants were placed into twos groups; young persons (Y) 

ages 20–25, and older persons (O) ages 60–79. The young group con-
sisted of 10 participants and the elderly group consisted of 20 partici-
pants; each group was equally divided between male and female. 
Inclusion criteria stated that all participants must be healthy without 
any history of ankle injuries, uncontrolled neuromuscular, orthopedic, 
cardiovascular disease, or any other health-related circumstances that 
may have affected neuromuscular responses during testing. Following 
approval by University’s Human Subject Research Internal Review 
Board, participants were recruited using flyers and University contacts. 

2.1.2. Procedures 
All testing sessions took place at the Laboratory of Neuromuscular 

Research and Active Aging. Testing required a one time, 45 min, visit to 
the laboratory. Subjects signed all consent forms approved by the Uni-
versity’s Subcommittee for the Use and Protection of Human Subjects, 
and were administered a general health questionnaire, and anthropo-
morphic measurements were taken. Subjects had their dominant leg 
prepared for surface electrode placement on the tibialis anterior (TA), 
peroneus longus (PL), gastrocnemius medialis (GM), gastrocnemius 

lateralis (GL), and soleus. To minimize signal interference, the surface of 
the subjects’ skin was shaved, abraded, and cleansed with rubbing 
alcohol. Since placement of the electrodes on the muscle can affect the 
signal properties. Disposable Ag/AgCl dual electrodes (Noraxon USA, 
Inc., Scottsdale, AZ) were positioned parallel to the underlying muscle 
fibers according to Crams Introduction to Surface Electromyography 
[46]. 

2.1.3. Testing 
Following electrode placement, subjects performed a 60s plantar 

flexion (PF) and dorsiflexion (DF) maximal isometric contraction on the 
Biodex 4 Dynamometer (Biodex Inc., Shirley, New York). The subject 
was seated in the Biodex chair with their leg, ankle, and foot supported 
by an external attachment (Fig. 2). At a “go” cue, the subject either 
performed a perceived maximal isometric contractions at 5 degrees of PF 
or 25 degrees of DF. Participants were given verbal encouragement 
throughout all isometric contractions. Although PF and DF employ 
different muscle groups, a fifteen minute recovery was provided be-
tween the PF and DF isometric tests to reduce the impact of residual 
fatigue. 

2.1.4. Analysis 
The Biopac 150 system (BIOPAC Systems Inc., Goleta, California) 

was used to collect and analyze EMG signals of the TA, PL, GM, and GL 
during isometric testing. The Biopac 150 system has an input impedance 
of 1.0 M and common mode rejection ratio (CMRR) of 110 dB min (50/ 
60HZ). The gain was set at 1,000 with band pass filtering set between 20 
and 450 Hz. Signals were sampled at a frequency of 1000 Hz, digitized 
using a 16-bit A/D converter and stored on a laptop laboratory com-
puter. Recorded EMG signals from each muscle were analyzed using the 
Biopac 150 system software. Normalized root mean square EMG (Nrms 
EMG) was calculated during the maximum voluntary contraction (MVC) 
from the participants’ initial 3-4s time interval. 

2.2. Combinational spectral band activation complexity 

2.2.1. EMG wavelet intensity filtering 
We utilized Von Tscharner’s classical approach of intensity filter 

implementation [3]. His proposed wavelet basis function defined by, 

ψ̂ i(fci, scale, f ) =
(

f
fci

)η

⋅e

(

1− f
fci

)

η
⋅Θ(f ) (1)  

where, η = (fci⋅scale), i ∈ {1,…,K} filters, fc is the center frequency of a 
particular wavelet, f is the range of frequencies, and Θ(f) is a heavy side 
function only expressing frequencies greater than zero. However, we 
deviated from the original methodology because of the valid concerns 
presented by Gabriel [47]. This discussion points out how applying the 
designed filters to the EMG’s source signal in the frequency domain, 

Fig. 2. The demonstrated isometric study design using the Biodex 4 
Dynamometer. 
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Xs(f), is inappropriate since we are applying the Fourier transform to a 
non-stationary signal, thus defeating one of the major purposes of the 
novel signal processing approach. As Borg highlights [48], von 
Tscharner’s implementation shares similarities to a basic equalizer that 
decomposes the EMG time domain’s source signal, xs(n), into its asso-
ciated intensity components, Ii(n), with respect to each filtering process, 
κi, shown in Fig. 3. This presented wavelet method convolves the sEMG 
time domain signal, xs(n), with the wavelet filter, ψ̂ i(n) and Gaussian 
smoothing methods. We define this entire process as, ̂κ i, where i ∈ {1,… 
,K} filters. 

In order to obtain ψ̂ i(n), we transfer the designed respective fre-
quency domain filter, ψ̂ i(fci,ai,bi), to the time domain by, 

ψ̂ i

(
n
)
= C

L
{

F
− 1{ψ̂ i

(
fci, ai, bi

)}}
, (2)  

where F − 1 is the inverse Fourier transform and C L is the circular shift 
of the numeric output of the function, where L = N

2 and N is the length of 
the filter in the time domain. The C L operation with L = N

2 is equivalent 
to performing a FFT shift, which adjusts the mirroring image in the 
frequency domain. However, this sequence happens to be in the time 
domain. Thus, the sequence {x(0),…, x(N − 1)} is cyclically shifted to 
{x(N/2),x(N − 1),0,…,x(N/2 − 1)}. By applying the Eq. (2), we are able 
to move the filter designed in the frequency domain to the time domain 
described with real and imaginary components. Utilizing the filter in 
time domain, ψ̂ i(n), we obtain the intensity of the signal xs(n), which is 
defined by the convolution of xs(n) with ψ̂ i(n). The intensity sequence, 
Ii(n), is then smoothed using a Gaussian filter, 

Gf
(
n
)
=

1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ e
− 0.5

(
x
σ

)2

(3)  

where σ = Fs
4 , Fs is the sampling frequency and x = ∈

{
− 3Fs

4 ,…,3Fs
4

}

. The 

implementation of the smoothing is achieved by 

Î i
(
n
)
= Ii

(
n
)

*Gf

(
n
)
, (4)  

where we obtain a smoothed filtered intensity EMG sequence. 
After completion of the wavelet intensity filtering, the sEMG 

sequence was divided into 6 equal length time segments (windows) 
before proceeding to the next analysis step. Each window segment was 
10 s in length. 

2.2.2. Activation sets 
Activation Sets analysis is the second step in Fig. 3 that visually 

depicts the process for calculating CSB-AC. By first utilizing each 
smoothed filtered spectral intensity band, Î i(n), a generalized peak de-
tector, ρt , is applied to the time series. The peak detector, ρt, was the 

invoked function “findpeaks” from MatLab version 2017a. This MatLab 
function produces a vector of length, Ji, yielding the locations in time 
where the maximum intensity activates for a spectral band, ̂τ i, where i ∈
{1,…,K} filters, each Ji may not be equivalent, and J≪N. Thus when a 
peak detector, ρt , is applied to a spectral intensity band, Î i(n), we pro-
duce an Activation Set, τ̂ i, which describes the timing of how that 
particular spectra’s intensity activates. This process was completed for 
each of the 6 windows. 

From the prospective of an orchestra playing components of a song, 
where there is a harmony and melody we attempt to capture the “mel-
ody” of the bio-signal by combining all of the activation sets back 
together into one temporal sequence. This is achieved by concatenating 
all the activation’s sets, τ̂C = [τ̂1, τ̂2,…, τ̂k] and then applying a sort 
function to ̂τC (in which only unique time instances are provided and no 
duplicated time instances are reported from other K sets). This concat-
enated and sorted sequence, ÂT, denotes how various spectra intensify 
and dampen as a function time through the mixture of influences of 
spectral neuromuscular factors of conduction velocity and motor unit 
recruitment. This concatenated and sorted sequence, ÂT, is defined by, 

ÂT =
[
a1, a2, a3…, aT − 1, aT

]
, (5)  

where T is the total amount of intensity activation that occurred across 
all K filters and T≪L. 

2.2.3. Activation complexity 
Although we captured the neuromuscular spectral temporal 

sequence, we have no quantitative way of evaluating this combined 
sequence of activation. Thus, we use the temporally combined activation 
sets, ÂT , to examine the predictability of how intensity in a sequence, 
Î i(n) changes. By examining the interval of times that occur between 
each activation, we can remove any mean off-set of the sequence across 
subjects and specifically look at the timing of the sequence. This is 
achieved by taking the difference of the vector ÂT and operationalized 
by, 

ΔÂT =
[
a2 − a1, a3 − a2,…, aT − aT − 1], (6)  

ΔÂT = [A1,A2,…,AS], (7)  

where Ai = ai+1 − ai and S = T − 1. Following this, we process the en-
tropy of the new sequence, ΔÂT, with an entropic method to quantify 
the complexity of the activation. For this particular experimental case, 
sample entropy was applied [49]. A template vector with length m, 
where Am(i) = {Ai,Ai +1,…,Ai+m− 1} and distance function 
d[Am(i),Am(j)](i∕=j). Utilizing the template vector and distance function, 
we define sample entropy by, 

Fig. 3. A flow diagram describes the Combinational 
Spectral Band Activation Complexity (CSB-AC) 
method. The first part of the method, the wavelet 
intensity filtering, mimics an equalizer in which the 
input signal xs(n) is decomposed into their respective 
frequency and intensity components, Î i(n), via the 
defined wavelets, ϕ̂i(n). The next part of the process 
finds the time instances of when the intensity peaks 
or activates, across all ̂I i(n) and sorts the instances as 
function of time. The last part of the process, Acti-
vation Complexity, computes the time intervals be-
tween the activations. Activation Complexity then 
examines the predictability of these activations via 
sample entropy.   
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SampEn
(
ΔÂT , r,m

)
= − log

(
B
C

)

, (8)  

where B is the number of d[Am(i),Am(j)] < r,C is the number of d[Am+1(i),
Am+1(j)] < r, m = 2, and r = .2⋅std(ΔÂT). This reported entropy value 
from the sequence, ΔAT produced our Combinational Spectral Band 
Activation Complexity (CSB-AC). Again this process was completed for 
each window, yielding 6 CSB-AC values. It is important to note that the 
type of entropy measurement employed to the sequence will be sensitive 
to the number of data points in the sequence, thus limiting the window 
size that can be analyzed. Typically sample entropy and permutation 
entropy require a minimum of 100 samples, whereas approximate en-
tropy requires a minimum of 1000 samples [27]. Based on the 10 s 
windowing scheme, we produced well over 100 samples for each widow 
(On average across all subjects there was an average of 161.88 ± 23.38 
samples produced). 

2.3. Statistical analysis 

A 2 (technique) x 2 (age group) x 6 (window) mixed ANOVA was 
used to determine differences between age groups and sample entropy 
and CSB-AC processing techniques across six windows. When significant 
main effects or interactions were detected, least square differences (LSD) 
post hoc tests were used to determine the sources. All statistical analysis 
was performed using SAS 9.3 (IBM SAS Statistics, Cary, NC). Statistical 
significance was set a priori at p < 0.05. 

3. Results 

3.1. Sample entropy vs CSB-AC 

Results of the mixed ANOVA for each muscle are presented below. 
Before moving forward, it is important to note that the variables η from 
Eq. (1) and η2 as seen below in the ANOVA results are completely 
unrelated. 

3.1.1. Tibialis anterior 
For the TA, the repeated measures ANOVA revealed a significant 

effect by analysis method (Sample Entropy vs CSB-AC) (p = .006; η2 =

.125), and a significant Window x Group Interaction (p <.0001; η2 =

.142). Pairwise comparisons between analysis methods revealed that 
CSB-Activation Complexity produced significantly higher comp 
lexity than Sample Entropy (Mdiff = .199 ±.070; 95%CI: [.058, .340]; 
p = .006; d = .73). When groups were compared within windows, no 
significant difference was found between the younger and older adults 
for window one; however, significant differences were seen for all other 
windows with the older group producing higher intensity levels than the 
younger group (see Fig. 4). Pairwise comparisons examining the 
differences among windows within groups (see Fig. 5) revealed that for 
older individuals significant differences were seen among all win 
dows except for windows 3 and 4 (Mdiff = .038 ± .028; 95%CI : [ − .018,
.940]; p = .179), 4 and 5 (Mdiff = .07 ± .038; 95%CI : [ − .018, .940]
; p = .061), and 5 and 6 (Mdiff = .043 ± .035; 95%CI : [ − .113, .027]
; p = .223). 

A similar pattern (see Fig. 5) was seen for the younger subjects with 
significant differences observed between windows 1, 2, and 3; and these 
windows were significantly different than windows 4, 5 and 6. No dif-
ferences were seen between windows 4, 5, and 6. 

3.1.2. Peroneus longus 
The repeated measures ANOVA for the peroneus longus revealed a 

significant effect by Window (p < .0001; η2 = .457) and a significant 
Group x Window interaction (p < .0001; η2 = .142). Once again, the 
pairwise comparison between groups within each window showed no 
significant difference between the younger and older participants for 

window one; however, significant differences were seen for all other 
windows with the older group producing significantly higher complexity 
levels than the younger group (see Fig. 6). Pairwise comparisons 
examining the differences among windows within groups revealed that 
for older adults no significant differences were seen between windows 1 
and 2, windows 3, 4 and 5, and windows 5 and 6. For the younger group, 
window 1, 2, and 3 were significantly different from all other windows 
while no significant differences were seen between windows 4 and 5, or 
windows 5 and 6 (see Fig. 7). 

3.1.3. Soleus 
For the Soleus, the mixed ANOVA revealed significant differences in 

complexity for Window (p = .001; η2 = .089), Group (p < .0001; η2 =

.119), and Analysis Method (p = .048; η2 = .068). Post hoc testing for 
group showed that older individuals produced more complexity than 
younger individuals (Mdiff = .303 ± .081; 95%CI : [.140, .466]; p < .

0001; d = 1.02), CSB-Activation Complexity produced significantly 
higher complexity than Sample Entropy (Mdiff = .164 ± .081; 95%CI :
[.001, .327]; p = .048; d = .50) (see Fig. 8), and no significant differ-
ences were seen between Window 1, 2, 3, 4, and 5, between Windows 4 
and 5, or between Windows 5 and 6 (see Fig. 9). 

3.1.4. Gastrocnemius lateralis 
The ANOVA for the gastrocnemius lateralis revealed a significant 

main effect by window (p = .012; η2 = .062), a significant group x 
window interaction (p = .004; η2 = .076), and a significant main effect 

Fig. 4. Differences between the Younger and Older groups across windows for 
the Tibialis anterior. 

Fig. 5. Differences among windows for the older and younger groups for the 
Tibialis anterior. (Windows with the same letter are not significantly different 
from one another.) 
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by analysis method (p <.0001; η2 = .301). The pairwise comparison for 
analysis method revealed that CSB-Activation Complexity produced 
significantly higher complexity than Sample Entropy (Mdiff = .384 ± .

078; 95%CI : [.227, .541]; p = .0001; d = 1.21) (see Fig. 10). The 

pairwise comparison between groups within each window showed 
significantly greater complexity for the older compared to the younger 
participants for windows 3, 4, and 6 (see Fig. 11). Pairwise comparisons 
evaluating differences among windows for older individuals revealed no 
significant differences between windows 1 and 2, windows 3, 4 and 5, 
and windows 5 and 6. For the younger group, significant differences 
were seen between window 1 and all other windows. However, no sig-
nificant differences were found between windows 2, 3, 4, and 5; or be-
tween window 3, 4, 5, and 6 (see Fig. 12). 

3.1.5. Gastrocnemius medialis 
For the gastrocnemius medialis there were significant main effects 

for group (p = .037; η2 = .075); analysis method (p < .0001; η2 =

.482); and window (p = .038; η2 = .045). Pairwise comparisons for 
group showed that the older participants demonstrated significantly 
greater complexity than younger individuals (Mdiff = .155 ± .073; 95% 
CI : [.009, .301]; p = .037; d = .36); while CSB-Activation Complexity 
produced significantly higher complexity than Sample Entropy (Mdiff =

.526 ± .073; 95%CI : [.380, .672]; p < .0001; d = 2.92) (see Fig. 13). 
Post hoc analyses for window revealed that window 1 was not signifi-
cantly different from any other window; while window 2 was not 
different from windows 3 and 4. Finally, window 4 was not different 
than window 5, and window 5 was not different than window 6 (see 
Fig. 14). 

4. Discussion 

Complexity is a numerical representation of the unpredictability and 
irregularity of a signal [16]. It can be calculated using different entropic 
measures such as approximate entropy, fuzzy approximate entropy, and 
sample entropy. Albeit these classical entropic measures have been used 
in the field of EMG signal analysis, they still require further validation to 
fully interpret how entropy can be applied to the interpretation of the 
EMG signal. This paper introduces the capacity of a novel method, CSB- 
AC, to provide insights into the mechanisms of modulating muscle firing 
patterns and further elucidate underlying neuromuscular dynamics. 
CSB-AC was compared to the sample entropy method in a sample of 
healthy younger and older men and women to assess differences in the 
methods’ capacities to quantify muscle complexity during an isometric 
contraction. Surface EMG from five muscles were assessed. 

4.1. Tibialis anterior 

As part of the testing the subjects completed a 60s dorsiflexion 
maximal isometric contraction with the TA being the primary agonist. 

The significantly greater values for CBS-AC vs sample entropy indi-
cate a potentially greater sensitivity of the former to the underlying 

Fig. 6. Differences between the Younger and Older groups across windows for 
the Peroneus longus. 

Fig. 7. Differences among windows for the older and younger groups for the 
Peroneus Longus. (Windows with the same letter are not significantly different 
from one another.) 

Fig. 8. Impacts of Technique (black bar = CSB-Activation Complexity; grey bar 
= Sample Entropy) and Age Group (black bar = Older; grey bar = younger) on 
complexity for the Soleus.*greater than Sample Entropy (Technique) or 
Younger Group (Age Group). 

Fig. 9. Differences among windows for the Soleus across the entire sample. 
(Windows with the same letter are not significantly different from one another.) 
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neuromuscular factors within the sEMG signal. Since complexity is a 
representation of a signal’s unpredictability and irregularity, a higher 
value may indicate more irregularity or unpredictability within the EMG 
signal. Alternatively, it could be postulated that the signal processing 
technique is capturing more noise; however, this is unlikely, as CSB-AC 

evaluates the overall signal size as it determines specific points in time 
that are associated with the location of maximum intensity. Therefore, 
this significant interaction supports the effectiveness of using CSB-AC 
when measuring sEMG complexity. When examining the window x 
group interaction, the pairwise comparison revealed that as the window 
increased, the complexity showed a significantly greater decrease in the 
younger adults than older adults (Fig. 4); however, both older and 
younger adults exhibited significant progressive decreases in patterns of 
complexity across windows (Fig. 5). 

The similarity in decreasing complexity patterns was expected as 
higher window numbers reflect the later part of the contractions and 
muscle fatigue would be expected as the duration of the isometric 
contraction increased, regardless of the subjects’ ages. However, the 
higher complexity observed in older adult windows was expected, as 
complexity represents increased unpredictability and chaos [50]. 
Further, the larger decreases in complexity seen in our younger versus 
older subjects may be reflective of the greater decreases in motor unit 
firing rates in the TA of younger than older persons during maximal 
isometric contractions [51]. 

4.2. Plantar flexors 

Because the muscles of the triceps surae all contribute to plantar 
flexion, their results should be examined holistically. For the PL, the 
more rapid decrease in complexity levels by the younger subjects than 
their older counterparts across windows was not unexpected, given the 
similar pattern seen in the TA and the similarities in size and fiber 

Fig. 10. Comparison of complexity assessment techniques for the Gastrocne-
mius Lateralis. (*Significantly greater than Sample Entropy, p < .0001). 

Fig. 11. Differences between the older and younger participant groups across 
windows for the Gastrocnemius Lateralis. (*Significantly higher than the 
younger group, p < .009). 

Fig. 12. Differences across windows within the older and younger groups for 
the Gastrocnemius Lateralis. (Windows with the same letter are not different 
from one another.) 

Fig. 13. Impacts of Technique (black bar = CSB-Activation Complexity; grey 
bar = Sample Entropy) and Age Group (black bar = Older; grey bar = younger) 
on complexity for the Gastrocnemius Medialis. (*greater than Sample Entropy 
(Technique) or Younger Group (Age Group)). 

Fig. 14. Differences among windows for the Soleus across the entire sample. 
(Windows with the same letter are not different from one another.) 
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structure between the PL and TA. 
For the Soleus, the significant main effects for Group, Window, and 

analysis method should be expected. Like the TA, the higher complexity 
values for CSB-AC than sample entropy may indicate the greater sensi-
tivity of the CSB-AC to the factors affecting the sEMG signal (Fig. 8 left). 
Furthermore, the older adults had greater complexity numbers than the 
younger adults (Fig. 8 right) likely due to a more rapid fatigue-related 
decline in complexity across windows in the younger adults due to 
their high initial power outputs. However, this may not be evident given 
the fatigue resistant nature of the predominantly slow twitch Soleus and 
the lower magnitude of difference between groups. 

The ANOVA analysis for the GL, which showed greater levels of 
complexity seen with CSB-AC compared to sample entropy, once again 
reflects the greater sensitivity of CBS-AC to the underlying neuromus-
cular factors within the sEMG signal (Fig. 10). However, when exam-
ining Window and Group x Window interaction the patterns differed 
somewhat from those seen in the previous muscles. The greater 
complexity values of the older compared to younger adults across win-
dows 3, 4 and 6 (Fig. 11) and that their declines in complexity across 
windows was limited (Fig. 12), may reflect the fatigue resistance often 
reported in older compared to younger persons during maximal con-
tractions [52,53]. 

As with the other muscles of the triceps surae, the higher complexity 
values for CSB-AC than sample entropy seen in the GM indicated its 
greater sensitivity to the changes in the components of the sEMG signal 
(Fig. 13 left). The older adults had greater complexity than the younger 
adults (Fig. 13) and the complexity levels showed little decline across 
windows. Like the Soleus, the greater complexity values and lesser 
decline in complexity values seen for the older group seen in the GM, 
likely reflects lower fatigue levels during the maximum voluntary 
contraction possibly mirroring the aforementioned fatigue resistance 
that accompanies aging [52,53] and the fiber type restructuring favoring 
Type I fibers evidenced during the aging process [54]. 

4.3. Interpretations 

4.3.1. Aging and complexity 
As previously discussed, complexity is a numerical representation of 

the unpredictability and irregularity of a signal [16]. It is the result of a 
methodology that seeks to quantify the chaotic and unpredictable nature 
of a signal. Because sEMG can be described as linear enveloped, 
Gaussian distribution [8], the signal itself can be very chaotic and un-
predictable. This suggests that complexity measures may provide new 
insights into understanding the mechanisms behind neuromuscular 
firing, particularly how those mechanisms change over time. 

Aging is a normal process that results in morphological changes 
affecting performance capabilities particularly in the neuromuscular 
systems. The aging process includes denervation of Type-II fibers con-
verting them to Type-I fibers [35,40,43], hypothetically decreasing the 
variability of the spectral content as Type-II fibers have a higher firing 
rate vs Type-I fibers. This hypothesis has been examined in the literature 
with use of complexity measures. Age-related changes to sEMG 
complexity has been demonstrated for upper and lower extremity 
musculature [30,32–34,42,55].Arujunan evaluated complexity of the 
biceps brachii during isometric contractions both experimentally [30] 
and through modeling [32]. In both instances the authors determined 
that the older adults had a reduction in complexity of the sEMG when 
compared to the younger adults. The authors attribute the reduction in 
complexity specifically to the reduction in the ratio of Type-II to Type-I 
fibers and to the reduction in total number of muscle fibers. Ao [33] 
found similar results when examining biceps and triceps function in 
stroke-affected and unaffected subjects. Age-matched control subjects 
had lower complexity values vs younger adults. Like Arujunan, the au-
thors attributed these differences to reduction in complexity to a 
reduction in the number of active motor units along with their respective 
firing rates in the biceps brachii. Analyses of lower body musculature 

have produced different results. 
Piasecki [42] examined age-related changes in the vastus lateralis of 

older and young men. They determined that for the vastus lateralis, 
older adults had higher complexity values than young adults when 
analyzing sEMG data collected during held isometric contractions at 
25% of MVC. This was observed even though many of the expected age- 
related changes were evident including, reduction in number of motor 
units, decreased motor unit potential, and reduced firing rates. Dela [34] 
assessed complexity of the gastrocnemius during a walking task. The 
authors determined that older adults had greater complexity compared 
to young adults, though they did not comment directly on how 
morphological changes were affecting complexity. Kang [55] evaluated 
muscular complexity with sample entropy for muscle activity from the 
vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior 
during a walking task. The vastus lateralis, biceps femoris, and tibialis 
anterior had lower complexity values in older adults vs young adults, 
while the gastrocnemius had higher complexity values in older adults 
[55]. The higher complexity for the soleus and gastrocnemius lateralis in 
the current study are in agreement with the results reported by Kang, as 
they are both part of the triceps surae group. As noted above, the higher 
complexity values across windows is likely the result of age-related 
declines in fatigue levels during older individuals’ performance of 
held maximal isometric contractions [52,53,56]. 

Kang [55] provides three potential reasons for the higher complexity 
in the gastrocnemius of older adults. The first reason relates to changes 
in general activation patterns involving gait due to changes in hip and 
ankle moments, which have also been substantiated in fall related 
research. Older adults have modified balance recovery techniques 
compared to younger adults affecting gastrocnemius and tibalis anterior 
activation [57–61]. The second reason relates to the increase in neuro-
muscular noise associated with aging in combination with decreased 
motor drive. Roos [62] notes that neuromuscular noise increases as one 
ages. Factors include decreasing number of motor units, decreasing size 
of motor units, propioceptor deterioration, conduction velocity 
decrease, and deterioration of muscle spindle function. When increased 
neuromuscular noise is combined with less motor drive, Kang [55] ex-
plains the entropy analysis may be dominated by the noise portion. This 
could also explain the similarity between the gastrocnemius complexity 
profile and the sample entropy of white noise [34,55]. The third reason 
for increased complexity in older adults was longer burst activation from 
walking. Kang [55] measured the time a muscle spent “on” vs “off”, and 
found that higher “on” values corresponded with higher complexity. 
This effect was noticed in the gastrocnemius for the older adults. Kang 
[55] speculate that the increased complexity is due to activation pat-
terns in the gastrocnemius becoming similar to that of white noise. 
Changes in activation patterns could be a potential reason for higher 
complexity in older adults in our paper. 

4.3.2. CSB-AC vs sample entropy 
The results of our paper indicate that CSB-AC returns greater 

complexity values than sample entropy. Four of the five muscle groups 
yielded statistically significant differences between the two analysis 
methods. These findings demonstrate that the intensity dynamics 
methodology of CSB-AC is capturing more of the unpredictability and 
irregularity of the signal than sample entropy methods. It may be argued 
that the higher complexity between methods may be associated to high 
influx of noise within the measurement method itself; however, this is 
not the case as CSB-AC specifically examines the overall signal size as it 
determines specific points in time that are associated with the location of 
maximum intensity. 

The mathematical process of CSB-AC incorporates a significant 
amount of reduced data points in an order of magnitude of a 1000x 
reduction per spectral band. The use of the wavelet intensity filtering 
(spectral band) on the EMG signal, which only accounts for the 
maximum intensity (Activation), is thus extracting key motor recruit-
ment patterns and only preserving the temporal components needed for 
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characterizing the statistical variation between the two cohort recruit-
ment patterns. The classical techniques apply the entropic method to the 
entire time domain signal, in which case the key activations within the 
EMG are washed out by overlapping or embedded intensities of other 
spectral bands. The novel method overcomes this problem by applying 
the wavelet intensity filtering before applying sample entropy, preser-
ving both temporal and spectral content. This provides us with more 
available information when analyzing and evaluating the complexity of 
the sEMG that is not possible by just using classical techniques such as 
sample entropy. This can be seen in Fig. 1, where the EMG Intensity 
During maximum activation (in blue with dots indicting maximums) 
have additional colored x’s on the trace indicting the presence of 
embedded or hidden spectral intensity band activation. The resulting 
points indicate the importance of motor recruitment patterns that would 
otherwise remain unnoticed using classical complexity measures. The 
strength of CSBAC over classical complexity measures is more evident if 
we revisit Kang’s [55] explanation for increased complexity in older 
adults. The authors hypothesize that activation patterns of the gastroc-
nemius are similar to that of white noise, leading to the increased 
complexity. This interpretation is hindered by their use of sample en-
tropy. In theory, CSB-AC should not be less affected by neuromuscular 
noise, which would allow researchers to discount it in their analysis. 
Therefore, this method provides novel insight into the intricacies of 
neuromuscular dynamics not yet presented in the literature. Although 
we cannot determine what underlies the difference in complexities be-
tween the two methods, we have presented observations and laid the 
foundational work necessary to rethink motor recruitment dynamics. 
Using the orchestral analogy, sample entropy can be seen as a patron 
listening to the symphony, but lacking the ability to distinguish indi-
vidual elements of the woodwinds, brass, strings, and percussion sec-
tions because there are too many instruments or chairs per section. In 
contrast, during CSB-AC, the full orchestra has been reduced to just the 
first chairs of each section so the patron can now distinguish the violins 
from the violas. Once these intricacies are revealed, the errors and the 
quality of how the chair is playing become more apparent. Thus CSB-AC 
can better describe the performance of the orchestra or the performance 
of embedded neuromuscular dynamics. This allows the researcher to ask 
the next logical question, how important is the violin versus the viola to 
the overall musical piece? 

5. Conclusions 

This paper lays the foundational work for an innovative technique 
demonstrating a critically embedded dimension of information within 
the sEMG signal which will be used to examine neuromuscular firing 
dynamics in the future. The presented nascent method, CSB-AC, can 
better uncover muscular activation patterns by preserving the spectral 
band intensity content and using an entropy approach to measure sEMG 
signal complexity. We have demonstrated that CSB-AC utilizes strategic 
motor unit points that are spectrally decomposed within the time series 
(a factor of 1000x less data points than the original EMG data) to pro-
duce significantly greater complexity than sample entropy when 
assessing sEMG from an isometric contraction. In our experimental test 
case, CSB-AC revealed that older adults displayed higher levels of 
complexity than younger adults and that younger adults had a faster rate 
of decay in complexity. CSB-AC provides a new mathematical approach 
to deriving the complexity of an electrophysiological signal, such as 
sEMG, that contains novel information not attainable using current 
entropic methods. Because CSB-AC reduces the overall signal length 
when determining the points of activation intensity, it implies that the 
resulting points have a more critical importance to motor recruitment 
strategies than previously suggested. There is a need for continued 
analysis with CSB-AC to allow further understanding of motor recruit-
ment of how motor unit recruitment patterns change due to diseases, 
injuries and types of contractions. This foundational work will lead to 
better neuro-muscular prognostics through an enhanced understanding 

of motor recruitment and firing patterns. 
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