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Abstract

There has been little to no work in the area of spectroscopy noise in
order to create data sets for analytical algorithms to be challenged on
the ability to separate chemicals. We present a framework on how to
build off of a sparse about of experimental data in order to expand your
chemometric database and create realistic instrumentation noise. The
combination of various interactions of chemicals combined with various
random permutations of spectroscopy noises enables researches to better
capture and model the multitude types of signals and variations that can
be present within an experimental reading.

1 Introduction

The unavailability of open source spectroscopy data and the difficulty in di-
rect acquisition of spectroscopy data via experiments are significant hurdles in
the development of effective detection algorithms associated with such data in
chemometrics. To address this issue, we sought to develop a method to generate
a synthetic spectroscopy data bank which attempts to faithfully capture the op-
erationally relevant features of fluorescent spectra. We wanted this method to
possess the ability to account for the variations arising from different excitation
wavelengths, multiple combinations of chemical mixtures, different apparatus
and effects of user error.

∗Please request code of the the noise generator or additional documentation
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2 Data from PhotoChemCAD

To generate such a synthetic database, we started with a sparse amount of
reputable data from PhotoChemCAD [1, 2]. To achieve our objective with this
limited set of experimental data, we made several assumptions:

• There is no chemical quenching.
• The spectral resolution is accurately depicted through interpolation and

decimation.
• All path lengths are 1 cm.
• Accurate depiction of the molar absorptivity is projected by scaling the

absorption spectrum by cited molar extinction coefficients.
• Beer-Lambert’s law is obeyed.
• Concentrations are below 1µM to minimized inner filter effects to achieve

additive absorption and emission spectra.
From PhotoChemCAD, we chose multiple chemicals within the same solvent,
Toluene. The analytes selected were from two chemical classes: oligopyrrole and
polycyclic aromatic hydrocarbons. These two criteria were selected to obtain
data that are similar in chemical composition. The resulting strong spectral
similarities create a “non-trivial” data set for classification and quantification
purposes. The chemicals that were used in the database are listed in Table 1
and 2.

The data from PhotoChemCAD provide neither the concentration of the
analytes nor the emission characteristics at different excitation wavelengths. In
our data set, we acquire these two quantities directly from published results
for spectral modeling see Table 1 and 2. Epsilon, ε, enables us to account for
different concentrations of the chemical; and the quantum yield, ΦF , enables us
to calculate different emissions spectra at various excitation wavelengths. With
these quantities accounted for, we are able to generate a more realistic data set.

2.1 Preprocessing of Spectral Data

The spectral data from PhotoChemCAD is an agglomeration of various sources,
where acquisition parameters are distinctive from each other. The spectral data
from the selected chemicals are different in their wavelength range and optical
resolution. To ensure proper manipulation among different chemical spectral
vectors, the length and indexing of the vectors are required to be equivalent. The
optical sampling of the spectral vectors obtained were either 0.25nm, 0.5nm,
or 1.0nm; hence, the vectors were interpolated or decimated to get values corre-
sponding to 0.5nm. Each vector was padded with elements of value 1.0 ¨ 10´20

to provide a uniform wavelength range throughout the entire database of se-
lected chemicals. The value 1.0 ¨ 10´20 is used to avoid absolute zero errors and
to circumvent subsequent complications with vector and matrix manipulations.
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Chemical Solvent
Epsilon (ε) in
cm´1{M at λEx

Quantum
Yield (ΦF )

Cited

5,10-Diaryl Chlorin Toluene
89, 100 at
414nm

0.260 [3]

5,10-Diaryl Mg-oxoChlorin Toluene
191, 000 at
408nm

0.100 [3]

5,10-Diaryl oxoChlorin Toluene
174, 000 at
414nm

0.130 [3]

5,10-Diaryl Zn-Chlorin Toluene
186, 000 at
412nm

0.083 [4, 3]

5,10-Diaryl Zn-oxoChlorin Toluene
209, 000 at
408nm

0.040 [3]

Bis(5-mesityldiprinato)zinc Toluene
115, 000 at
487nm

0.360 [5]

Bis(5-phenyldiprinato)zinc Toluene
115, 000 at
485nm

0.006 [5]

Magnesium Octaethylporphyrin Toluene
408, 300 at
410nm

0.150 [6, 7]

Magnesium Tetramesityporphyrin Toluene
446, 700 at
426.5nm

0.170 [8, 7]

Magnesium Tetraphenylporphyrin Toluene
22, 000 at
564nm

0.150 [9, 10]

Table 1: Chemicals in the Database: Oligopyrrole.

2.2 Generating Spectra Corresponding to Various Con-
centrations

A spectrometer takes measurements of light absorption, producing a unique
spectral absorption signature. When taking measurements, the concentration
and pathlength are held constant. The epsilon value, which is a function of the
excitation wavelength, is an intrinsic property of the measured chemical that
defines the spectral waveform characteristics. The selected data only provides
the absorbance, giving no insight into the concentration or pathlength. We are
therefore unable to distinguish the epsilon values due to the unknown collec-
tion parameters from the various sources provided by PhotoChemCAD. The
measured absorbance of the sample is proportional to the number of absorbing
molecules from the incident light of the spectrometer and it is essential that
the absorbance value is corrected for a meaningful comparison [13]. This cor-
rection for absorption is referred to as molar absorptivity or molar extinction
coefficients, which serves to compare spectra and evaluate the relative strength
of the absorbance. In order perform a proper comparison between spectra, we
scale the spectral vector with respect to epsilon at its appropriate listed excita-
tion wavelength from Table 1 and 2.
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Chemical Solvent
Epsilon (ε) in
cm´1{M at λEx

Quantum
Yield (ΦF )

Cited

Perylene-diimide Toluene
44, 000 at
490nm

0.97 [11]

Perylene-Monoimide Toluene
32, 000 at
511nm

0.86 [12]

Perylene-Monoimide(OR)3 Toluene
32, 000 at
479nm

0.91 [12]

Perylene-Monoimide (OR) Toluene
40, 000 at
507nm

0.82 [12]

Table 2: Database Chemicals: Polycyclic Aromatic Hydrocarbons.

Consider a measured absorption data vector from Table 1:

DAbj “
“

dAbj1 dAbj2 ¨ ¨ ¨ dAbjN
‰T
, (1)

where dAbjk P r0, As,@k P 1, N , A is an arbitrary positive number, and j is a
specific chemical. These optical absorption measurements were scaled to coin-
cide with cited molar extinction coefficients (i.e., epsilon) at the corresponding
wavelength from Table 1 and 2 via the following equation:

SAbj “ DAbj

ελExj
DAbjλEx

C, (2)

where ελExj is the molar extinction coefficient of chemical j from Table 1 and 2,
C is the concentration, and DAbjλEx is the element in DAbj that is associated
with epsilon at the specific excitation wavelength of λEx. With the spectral
vector properly scaled, we assume that each spectral element depicts its ap-
propriate molar extinction coefficient for all wavelengths. We can now apply
Beer-Lambert’s law to expand the database by altering the concentration while
we hold constant the pathlength at 1 cm.

2.3 Expanding the Data Set Via Quantum Yield

When a molecule is excited to a higher quantum state of a particle and it
transitions to a lower state, the molecule emits a photon. The more the molecule
absorbs energy the higher potential for it to elicit more photons. The amount of
fluorescence emission is a function of the amount of light absorbed by a molecule.
This function is known as the quantum yield of the fluorescence, ΦF . It is defined
as the number of photons emitted over the total number of photons absorbed
[14]. Based on the intrinsic nature of the molecule and its absorption properties,
specific wavelengths are more prone to be absorbed than others. It is apparent
that the excitation wavelength affects the total intensity of the absorption and
concurrently affects the total emission intensity. By dynamically changing the
excitation wavelength, we generate various emission spectra accounting for the
effect of quantum yield.
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Consider a measured fluorescence emission spectrum vector from Table 1
and 2:

DEmj “
“

demj1 demj2 ¨ ¨ ¨ demjN
‰T
, (3)

where Demjk P r0, As,@k P 1, N , A is an arbitrary positive number, and j is a
specific chemical. In order to generate further data and for a realistic simulation
of different excitation wavelengths, we consider Ioλ as the intensity of incident
light to excite the sample. We are able to quantify the summed intensity of the
emission fluorescence, SEm, as

SEm9NEmjSAbjλεΦFjIoλ, (4)

where SAbjλε is the element in SAbj that is associated with epsilon at λEx and
NEmj is the normalized vector of SEmj , i.e.,

NEmj “
DEmj

N
ÿ

k“1

DEmj

. (5)

Note that the summed fluorescence emission is dependent on the incident
light intensity, the absorbance magnitude at a particular λEx, and ΦF [14]. As
shown in Figure 1, different λEx s obtained from the absorption spectrum elicit
different energy contributions to the spectral topology of the emission signal.

Figure 1: Emissions as a Function of λ and ΦF .
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2.4 Generating Spectra Corresponding to Combinations
of Chemicals

Contingent on our assumption that the absorption and emission spectra are
additive, we expand our database to include linear combinations of chemicals.
This assumption is valid only when Beer-Lambert’s law is obeyed and the in-
ner filter effect is minimized, thus allowing us to define the linear combination
process at the wavelength of interest as

Aλ1
x`y “ Aλ1

x `Aλ1
y “ ελ1

x bCx ` ε
λ1
y bCy. (6)

One way to introduce an amount of different chemicals is by sampling with-
out replacement and without ordering. This can be accomplished via 7 and
expressed as a binomial coefficient, where k is the number of analytes that are
chosen from a set of n total number of analytes [15]:

Cnk “
npn´ 1q . . . pn´ k ` 1q

k!
“

n!

k!pn´ kq!
“

ˆ

n
k

˙

(7)

However, our intention is to evaluate these analytes over different combinations
of k. A visual example of four different chemicals is shown in Table 3.

k “ 1 k “ 2 k “ 3 k “ 4

Chem(1) Chem(1,4) Chem(1,2,3) Chem(1,2,3,4)
Chem(2) Chem(4,2) Chem(1,2,4)
Chem(3) Chem(4,3) Chem(1,3,4)
Chem(4) Chem(3,1) Chem(2,3,4)

Chem(3,2)
Chem(2,1)

Total = 4 Total = 6 Total = 4 Total = 1

Table 3: Evaluating Chemical Permutations.

Hence, we need to define equation 7 over a sum of all k:

k“n
ÿ

k“1

n!

k!pn´ kq!
“

k“n
ÿ

k“1

ˆ

n
k

˙

. (8)

It is apparent that, as we evaluate various n number of sets using equation 8,
we can get 2n´1 different chemical combinations (the ´1 is due to the fact that
we are not considering the scenario where there is no chemical present within
the database). These combinational permutations can also be later leveraged
by utilizing probability detection paradigms and matching algorithms to the
classification of spectroscopy signal [16, 17],

For software implementation purpose, we use a binary representation for
chemical presence/absence within the sample. This is illustrated by amending
Table 3 with the appropriate coded binary representation, where each bit rep-
resents chemical presence/absence (1=Chemical Present and 0=Chemical Not
Present).
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3 Errors in Spectroscopy Measurements

Spectroscopy signals are also affected by electronic noise, stray light, light scat-
tering, wavelength accuracy, resolution, stability, baseline flatness, effects of
sampling geometry, and user error [18]. While it is not realistic to accommo-
date all these types of errors, we now discuss how several additional sources of
error are introduced into our synthetic spectroscopy data set.

3.1 User Error

Use error is quite common in spectroscopy data. The most common user er-
ror involves a lack of concentration, usually associated with pipetting chemical
dilutions at low concentrations. This error can be further exacerbated if the mo-
lar absorptivity is high. Applying Beer-Lambert’s law to this error, one would
expect changes in peak height and overall spectral area. Another user error in-
volves fluorescent contamination of the measured sample, or when the detected
light is contaminated by Rayleigh or Raman scatter. This is also contingent on
the particle size of the analyte, which is a function of the variance within the
measured spectrum [19]. Figure 2 shows how the emission remains the same
with different excitation wavelengths in a pure sample, and how a contaminate
alters the emission spectrum topology at 420nm [18].

Figure 2: Emission Spectra of C102 and a Mixture of C102 with the Fluorescent
Impurity C153 [18].

3.2 Stray Light

Stray light is the measured light of any wavelength reaching the detector that is
not associated with the bandwidth of the selected wavelength [20]. Stray light
manifests itself as an apparent deviation in Beer-Lambert law. The effects of
stray light is a decrease in absorbance and a reduction of the perceived projected
linearity of the absorbance. This can be described by equation 9, where I is the
transmitted light, Is is the stray light, and Io is the incident light:

Absorbance “ ´ log

ˆ

I ` Is
Io ` Is

˙

. (9)

7



Figure 3 shows the effect of stray light on the absorbance [20].

Figure 3: Apparent Absorbance vs True Absorbance with Increasing Stray Light
[20].

3.3 Wavelength Accuracy

Wavelength accuracy is the inability to preserve the wavelength scaling at the
detector or emitter. This scaling error introduces a shift in the measured wave-
length. This causes our perception of the true λmax to be inaccurate [18, 20].
See Figure 4.

3.4 Self-Absorption

Self-absorption depends upon the geometric arrangement observing the fluores-
cence and high optical densities, which can cause intensity distortion within
specific wavelength ranges. As can be seen in Figure 4, the error causes a
shifting of the spectrum. Figure 5 is an example of a right-angle observation,
where short wavelength emissions are attenuated by the analyte Anthracence’s
absorbance at the shorter wavelengths [18].
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Figure 4: Wavelength Accuracy [18].

3.5 Overview of Spectroscopy Errors

From the discussion above, one notices that a large proportion of the errors
associated with spectroscopy measurements cause the nominal spectrum to be
perturbed in a “smoother” manner. Other types of errors that generate higher
frequency perturbations in the spectroscopy measurements are typically mod-
eled as additive white gaussian noise (AWGN). For the current purpose, our
intention is to model the errors that have a higher potential to elicit a mis-
classification within the database. This is what we undertake in the following
sections.

4 Insertion of Spectroscopy Measurement Per-
turbations

The introduction of perturbations to the database allows for the creation of
more realistic test samples in our prototype data set. This enables us to explore
how signal degradation can affect classification performance of our algorithm.

4.1 Windowing

We employ different windowing functions as the basic strategy to alter the
spectral emission and absorption vectors. The windowing foundation is only
the basis of defining, where the types of window functions will be implemented
in the spectra. These locations for each type of windowing function shares a
relationship with the spectral peaks of emission and absorption vectors. In later
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Figure 5: Effects of Self-Absorption.

sections, the windowing functions are modified to provided either compression
or dilation to the spectra within a specified design range.

Consider the following spectral data vector (corresponding to emission or
absorption):

S “
“

S1 S2 ¨ ¨ ¨ SN
‰T
, (10)

where Sk P r0, As, @k P 1, N , and A is an arbitrary real positive constant.
The peaks of this vector were examined to adaptively create perturbations in
the vicinity of these peaks. This was done to create a unique correlated noise
(Dilation or Compression) to individual spectral vector. This correlated noise
is dependent on S’s spectral peak “shape”, the windowing function type (t),
and the given window size Lw, where Lw ! N . The peaks were sought by
implementing the Matlab function findpeaks, where we set a minimum win-
dow distance Lw between peaks. The findpeaks function yields a vector P,
where the maximum peak location for the processed spectra are represent by
the elements of P:

P “ rk1, k2, ¨ ¨ ¨ kKs
T , (11)

where kp P r1, N s,@p P 1,K, and K ď N{Lw. Given Lw and N , we determine
the number of windows that will be designed by taking the integer quotient
tN{Lwu “ C, where C is the number of windows to be designed. This yields
C`1, window segments. We determine the type of windowing function that will
be employed to each window segment, i, based on our peak indictor vector, Ip.
The peak indictor vector informs us at what window segment a peaks occur by
taking the integer quotient plus a unit ones vector UK , where K is the length.

Ip “ tP{Lwu`UK (12)

10



We use vector Ip to determine, t, the type of windowing function to implement
for Wi,t. Each Wi,t is characterized with one of five possible windowing type
functions, t, on the ith window segment, where @i P 1, C ` 1 . The ith window
segment is associated to S’s spectral data by rS1`pi´1q¨Lw , Si¨Lwpi´1q`Lw s.

Wi,t “ rW1, W2, ¨ ¨ ¨ WLw s
T , (13)

where, Wj P r0, 1s,@j P 1, Lw,@t P 1, 5,@i P 1, C. Equation 14, handles the
residual data of S, since we only designed C windows.

WpC`1q,t “ rW1, W2, ¨ ¨ ¨ WN´pLw¨Cqs
T , (14)

where, Wj P r0, 1s,@j P 1, Lw,@t P 1, 5,@i P 1, C. The type of windowing func-
tion that is implemented for each i window segment is determined by recursively
examining each case in numerical order until the specific conditions of a case is
in accordance of the criteria. The windowing functions and conditioned criteria
are defined by the following five cases, where for all cases α P r0, 1s, γ “ pLw´1q,
and β “ p1´ α

2 q.

Windowing Case 1: Hanning Window

Wi,1pjq “ .5p1´ cosp2πp
j

Lw
qqq (15)

if and only if Di P Ip

Windowing Case 2: Tukey Window

Wi,2pjq “

$

’

’

&

’

’

%

1`cos pπp
2pj´1q
αpγq q´1q

2 , for 1 ď j ď αpγq
2

1, for αpγq
2 ď j ď pγqpβq

1`cos pπp
2pj´1q
αpγq q´

2
α`1q

2 , for pγqpβq ď j ď pγq

(16)

if and only if Di R Ip ^ Dpi´ 1q P Ip ^ Dpi` 1q P Ip

Windowing Case 3: Modified Left Tukey Window

Wi,3pjq “

#

1`cos pπp
2pj´1q
αpγq q´1q

2 , for 1 ď j ď αpγq
2

1, for αpγq
2 ď j ď pγq

(17)

if and only if Di R Ip ^ Dpi´ 1q P Ip ^ Dpi` 1q R Ip

Windowing Case 4: Modified Right Tukey Window

Wi,4pjq “

#

1, for 1 ď j ď pγqpβq
1`cospπp

2pj´1q
αpγq q´

2
α`1q

2 , for pγqpβq ď j ď pγq
(18)
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if and only if Di R Ip ^ Epi´ 1q P Ip ^ Dpi` 1q P Ip

Windowing Case 5: Null Variance Window

Wi,5pjq “ 1, for @j (19)

if and only if Di R Ip ^ Dpi´ 1q R Ip ^ Dpi` 1q R Ip

Each individual Wi,t window vector that is designed will be cascaded in numer-
ical order to construct, JF , the foundation for creating our dilation compression
vector to modify vector S. Hence, JF is defined as:

JF “ rW1,t, W2,t, ¨ ¨ ¨ WC,t, WpC`1q,5s
T , (20)

where Wi,t P r0, As,@i P 1, C,@t P 1, 5, and J P r0, As,@i P 1, pC ` 1q. However,
note we only design C windows, the (C+1) window will always default to case
5 to handle the residual data of S thats smaller than the specified window size,
Lw.

4.2 Basic Design for Dilation Noise

Once our foundation vector is set, we modify, Wi,t. We demonstrate a few
different methods to modify Wi,t to create the most ideal synthetic noise rep-
resentation starting from the most basic. As well, we review the down falls
in order to improve upon each method. We first exemplify synthetic noise to
the data by simply dilating the window locations where the peaks occur. This
dilation is scaled by a constant η. Therefore, we revamp W1,t, to be scaled by
η and force other Tukey windows W2´4,t to one:

ŴD̂1,t
“ pηq ¨W1,t ` ULw , (21)

ŴD̂2´5,t
“ p0q ¨W2´5,t ` ULw , (22)

JD̂ “ rŴD̂1,t
, ŴD̂2,t

, ¨ ¨ ¨ ŴD̂C,t
, WpC`1q,5s

T , (23)

SS`N “ JD̂ diagpSq (24)
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Figure 6: Absorbance Spectrum with Dilation Noise.

We can see in figure 6, that by implementing this method we are only given
the option of dilating the spectrum at a constant η. In addition, its worth noting
due to the fixed windowing segments, the alignment of the peaks are not centered
directly over the windowed segment causing shifting of the peak wavelength. In
some scenarios, this maybe considered ideal for further perturbations of the
signal, where the shifting of the peak wavelength is a function of η.

4.3 Basic Design for Compression Noise

Given that we can dilate the signal, in order for us to compress the signal, a
compression vector is designed as such by equation 25, 26, and 27, which is
pictorially represented in Figure 8:

ŴĈi,t
“ η ¨Wi,t ` pULw ´ ηULwq (25)

JĈ “ rŴĈ1,t
, ŴĈ2,t

, ¨ ¨ ¨ ŴĈC,t
, WpC`1q,5s

T , (26)

SS`N “ JĈ diagpSq (27)

where Dk P r0, As,@k P 1, N

4.4 An Axiomatic Approach for Designing Appropriate
Noise

In the previous sections, we discussed the foundation of the windowing and
the functions that were integral for dilation and compression of the signal by

13



Figure 7: Absorbance Spectrum with Compression Noise.

a factor of η. It’s only sensible to anticipate the above methods as a com-
bination of random dilation and compression for a more convincing simulated
noise. Considering these two functions as a whole, comprised of different adja-
cent windowing techniques, it is careless to assume that η’s effect on the signal
is equivalent. A pragmatic approach of declaring guidelines for the noise algo-
rithm must be established to meet the appropriate standards to have unbiased
detection simulations when noise is introduced. In order to fortify this con-
cept of why guidelines are required and to exam what guidelines that need to
be put in place, we introduce an algorithm that functionally fails as a dilating
compressing algorithm.

4.4.1 Failure for Proper Dilation and Compression

Ŵi,1 “ ηXWi,1 ` p1´
η

2
qULw , (28)

Ŵi,2´4 “ pηqWi,2´4 ` p1´
η

2
qULwq, (29)

Ŵi,5 “ Wi,5, , (30)

JĈD “ rŴD̂1,t
, ŴD̂2,t

, ¨ ¨ ¨ ŴD̂C,t
, WpC`1q,5s

T , (31)

SS`N “ JĈD diagpSq (32)

where X is a random variable uniformly distributed X P r0, 1s Visually ex-
amining the noise vector, we can note that the hanning windows exceeds the

14



Figure 8: Absorbance Spectrum with Noise Failing to Dilate.

peak magnitude of one. We may assume the data vector will undergo dilation
and compression, but this is deceiving. When the filter is applied to the data
vector the data is not properly dilated as expected. It begins to become appar-
ent, graphically in Figure 8 that, the magnitude of dilation on the sample may
not be comparable to the compression. However, the improper dilation may
be attributed to that particular sample, therefore simulations are done in the
preceding section to examine how the intensity changes are distributed across
numerous samples.

4.4.2 Noise Design Guidelines

The previous example shows the possible cause of how the noise is distributed
over the vector. When examined over numerous trials, it is possible that it may
not be ideal for testing our detection algorithm in the later chapters. Hence, we
set guidelines of what our ideal noise distribution should be in order to achieve
an appropriate testing scenario for our detection algorithm. The guidelines are
verified by visual inspection from simulations that produce the noise distribu-
tion.

Synthetic Noise Distribution Ideal Guidelines

1. η will be random for each designed window.

2. Within a single noise vector, Dilation and Compression can occur at var-
ious locations.

15



3. As η increases, the variance of the distribution will increase.

4. The noise distribution when evaluating the magnitude between corre-
sponding elements should be symmetric around zero.

5. The distribution of intensity loss and gain for a entire vector should be
symmetric around zero.

These guidelines will assist in the development of a pragmatic noise that will
better challenge the subsequent detection process. The simulation that is im-
posed to validate if the noise distribution meets the guideline criteria is created
with a database size of eleven Chemicals yielding 2Chem ´ 1 “ 2047 chemical
combinations , to process 6000 randomly picked chemicals. The correlated noise
algorithm applied the following noise equations 28 ,28, and 28. A normalization
for element intensity in equation 33 was imposed, since the absorbance can vary
so greatly, NEI .

NEI “
S

maxpSq
(33)

In order to create a robust synthetic noise model, we need to account for dilation
and compression equally. We are able to note the displacement of the intensity
to the corresponding elements with a histogram representation of ∆IE , defined
as 34. The parameter η is varied over four simulation to evaluate the effects
of the variance on the distribution, as shown in Figure 9, identifying the asym-
metry in the noise distribution. This current noise model does not meet the
guidelines stated and is therefore non-ideal. The model provided would pro-
vide questionable results in the detection algorithm, where it is ambiguous if
the algorithm failed or if it was a slight change in η causes a large shift in the
attenuation of the original signal.

∆IE “ JĈD diagpNEIq ´NEI (34)

16



Figure 9: Histogram of the Change in Intensity of Corresponding Elements.

Figure 10 examines the change in intensity over the entire vector, which
solidifies the need for the stated guidelines of p4q and p5q. We can can see that
from the distribution that a shifting is occurring as η increases, preventing any
type of dilation to occur within the spectrum. The change of intensity over
the entire vector, NV I , of the normalized spectrum, NV I , was calculated by
equations 35 and 36, to achieve the histogram Figure 10.

NV I “
S

řN
k“1pSq

(35)

∆IV “
N
ÿ

k“1

pJĈD diagpNV Iq ´NV Iq (36)

17



Figure 10: Histogram of the Change in Intensity of Entire Vector.

The cause can be further explained by examining the expectation of the
designed noise vector Wi,1 elements’ j and the adjacent windowing vectors.

ErŴi,1j s “ Erη ¨X ¨Wi,1j ` Uj ´
η

2
Ujs

ErŴi,1j s “ η ¨Wi,1jErXs ` ErUjs ´ Er
η

2
Ujs

ErŴi,1j s “ η ¨Wi,1jErXs ` Er1s ´ Er
η

2
s

ErŴi,1j s “ η ¨Wi,1j

1

2
` 1´

η

2

The adjacent windowing elements are constants and do not need to be evaluated
(Wi,3 Wi,4), but should be examined pictorially with Wi,1 in Figure 11.

18



Figure 11: Windowing Segment Examining Expectation.

We can now note, pictorially from Figure 11, that none of the elements
expectations surpass one, ultimately causing a summed loss of intensity or com-
pression of the signal. We can also note that anytime these adjacent windows
occur (Wi,2 Wi,3 Wi,4), we will always encounter a further induced intensity
loss. This intensity lose is not equally compensated by dilation. Furthermore,
even when dilation occurs within the function 28 it still compresses the width
of the peak, even though it’s an effective method for dilation. This deficiency
can be attributed to the innate way we window, since the peak of the signal can
range anywhere with the window length Lw. However, we should not see this
as a shortcoming since it causes further realist noise by shifting the spectrum
by a function of η.

4.5 Approximating an Advantageous Synthetic Noise

We propose the following combined dilation and compression noise functions to
fulfill the following guidelines, based on the windowing foundation function 20.
In order to satisfy these requirements, constraints are imposed to the functions.
However, we maintain the functions robustness to dynamically be altered for
compression and dilation.

4.5.1 Defining a Robust function

This is done by using a binomial distribution to create an indictor function I
to determine what Wi,1 function to implement, compression ŴCi,1 or dilation

19



Figure 12: Simulated Optimized Noise.

ŴDi,1 , where p “ .5 , in equation 38. This allows further manipulation of the
function for us to engage the guidelines criteria more stringently by enabling
two functions to competent against each other to achieve an approximate zero
mean distribution.

I “

"

1, with probablity p
0, with probablity (1-p)

(37)

The adjacent window’s elements are dependent on the design of Ŵi,1. We

designed Ŵi,1 from the fundamentals of 21 and 25 for the compression and
dilation vectors. Thus, the following equations 39, 40 were developed for the
Wi,1 windowing case.

ŴBi,1 “ ŴCi,1I` ŴDi,1pI´ 1q (38)

ŴCi,1 “ pAc1X2ηqWi,1 `ULwp1´Ac2η `Ac3ηX3q (39)

ŴDi,1 “ pAd1X1ηqWi,1 `ULw (40)

where η P r0, 1s, Xi is a uniform random variable P r0, 1s,@i P 1, 3, and Axi are
coefficients to control the functions. In order to avoid discontinuities between the
adjacent windows, due to biasing from each window from the random variable
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(a) Element Intensity

(b) Vector Intensity

Figure 13: Histograms of Intensity.
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X3, the following adjustments were made to the following cases:

Ŵi,2 “ Wi,2p1´ Ŵi`1,1p1qq ` Ŵi`1,1p1q, for pγqpβq ď j ď pγq (41)

Ŵi,2 “ Wi,2p1´ Ŵi´1,1pLW qq ` Ŵi´1,1pLW q, for 1 ď j ď αpγq
2 (42)

Ŵi,3 “ Wi,3p1´ Ŵi`1,1p1qq ` Ŵi`1,1p1q, (43)

Ŵi,4 “ Wi,4p1´ Ŵi´1,1pLW qq ` Ŵi´1,1pLW q, (44)

4.5.2 Constraint A:

Constraint A is to bound the expected dilation and compression functions to
be equivalent. This will assist one functions maximum from overpowering the
other and maintain a equivalent magnitude changes.

1´ Er min
jP1,LW

pŴCi,1jqs “ Er max
jP1,LW

pŴDi,1qs ´ 1

1´ Er1´Ac2η `Ac3ηX3s “ ErAd1X1η ` 1s ´ 1

1´ Er1s ` ErAc2ηs ´ ErAc3ηX3s “ ErAd1X1ηs ` Er1s ´ 1

ErAc2ηs ´ ErAc3ηX3s “ ErAd1X1ηs

ηAc2 ´Ac3ηErX3s “ Ad1ηErX1s

Ac2 ´Ac3ErX3s “ Ad1ErX1s

Ac2 ´
1

2
Ac3 “

1

2
Ad1

2Ac2 ´Ac3 “ Ad1

4.5.3 Constraint B:

Constraint B is to bound the variance of the dilation and compression functions
to be equivalent. This will prevent the dilation and compression functions from
causing an asymmetry within the noise distribution.

V arr min
jP1,LW

pŴCi,1jqs “ V arr max
jP1,LW

pŴDi,1qs

V arr1´Ac2η `Ac3ηX3s “ V arrAd1X1η ` 1s

V arrAc3ηX3s “ V arrAd1X1s

A2
c3η

2V arrX3s “ A2
d1η

2V arrX1s

A2
c3 “ A2

d1

4.5.4 Constraint C:

Constraint C is to bound the compression function’s maximum element in that
vector to never surpass the maximum value of the dilation function’s maximum
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element.

min
jP1,LW

pŴCi,1jq ď max
jP1,LW

pŴDi,1q

Ac1η ` 1´Ac2η `Ac3ηX3 ď Ad1X1η ` 1

Ac1η ´Ac2η `Ac3ηX3 ď Ad1X1η

Ac1 ´Ac2 `Ac3 ď Ad1

4.5.5 Constraint D:

Recalling Figure 11, based on the topology of design there will always be a
greater intensity loss with the compression function is implemented. To achieve
an approximate zero mean intensity loss for the vector, stated by the fifth guide-
line, we minimize the expected intensity loss of the vector when compared in
a random process of dilation and compression by exploiting the binomial equa-
tion. Using the binomial equation to our advantage, we can design the ŴCi,1

and ŴDi,1 functions accordingly having them achieve an approximate averaged
expected intensity value over all elements, 45. In order to account for this aver-
age expectation, we account for the effects of the adjacent windows as well for a
proper approximation. In the dilations case we used WD “ rWi,5,Ŵi,1,Wi,5s

and for the compression case we used WC “ rŴi,3,Ŵi,1,Ŵi,4s. Therefore,

base on the design of Ŵi,1 for the compression and dilation we can manipulate
our indictors function’s p value to further optimize the expected intensity to
have an approximate equivalent intensity deviation of compression and dilation.

Ewin “ p
1

3 ˚ Lw
p

3¨Lw
ÿ

j“1

ErWCsq ` p1´ pq
1

3 ˚ Lw
p

3¨Lw
ÿ

j“1

ErWDsq « 1 (45)

The following approximation was done with α “ 1, η “ .1, Ac1 “ Ac2 “ Ac3 “
Ad1 “ .5 and Lw “ 100, where Ewin “ 0.9918 with a p “ .33, implementing this
optimize noise at these parameters we manifest others noise vectors at various
different η’s assuming the changes are minute. If desired you can optimize the
p for different etas. In Figure 12, we used the aforementioned parameters to
designed noise at η “ 1, where simulations of the distributions of element and
vector intensity is shown in 13.

5 Conclusion

The synthetic noise generation was designed to create to mimic spectrum’s
changes caused by user error, stray light, wavelength accuracy, and self ab-
sorption. As you can note, that additive white Gaussian noise simply can not
use to mimic such erroneous changes within the spectroscopy signal. The noise
that was created is correlated to the various peaks within the spectrum and
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then constrained by the percentage of error by the parameter ν. More com-
pleted work that highlights the full creation of these spectroscopy data sets and
probably detection applications are available [21, 22].
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