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Extreme temperature or physiologically demanding environments often present in aerospace
missions pose a high risk of heat stress to pilots and astronauts which can lead to heat illnesses
and human performance decrements. This is particularly prevalent within military aircraft,
where many flight research installations and airfields are located in hot arid desert or high-
humidity tropical climates. The intense heat in these environments can exacerbate the severity of
the heat stress already present in the pilot due other physiological and environmental stressors.
To measure a key biological indicator of the level of heat stress, core body temperature, we
propose a noninvasive method for subjects under extreme high thermal stress using heart rate
and skin temperature measurements from mobile biosensors in real open-world environments.
As an analog for pilots operating in extreme thermal environments, we utilize observations of
professional race car drivers exposed to high thermal stress inside vehicle cockpits for several
consecutive hours. The conditions experienced by the drivers not only incorporate the heat stress
produced by the layered protective equipment but also the thermal stress from the operational
environment and vehicle. A Kalman filter is designed to predict core body temperature utilizing
linear models generated by the driver’s heart rate and skin temperature sensors. The data
obtained at 15 races from 4 different drivers was used to train the linear models and validate
the Kalman filter. Ground truth core body temperature measurements obtained from ingestible
core temperature capsules were used to measure the filter’s performance. Despite the number
of factors that negatively affected the quality of the biosensor data, such as stresssors due to
the operational environment and vehicle (e.g., extreme ambient temperatures, g-forces, heat
dissipation impairment), sensor dropouts and anomalies, and numerous physiological stressors
imposed on the drivers (e.g., elevated heart rate, dehydration), our method was robust enough
to be comparable to studies done in less complex environments.

I. Nomenclature

𝐶 = core body temperature reading
𝐶 = core body temperature reading estimate
𝐻 = heart rate reading
𝑆 = skin temperature reading
𝑏𝑖 = 𝑖-th coefficient used in the Kalman filter observation model
𝐸RMSE = root-mean-squared error
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II. Introduction

Infrequent exposure to extreme temperature or physiologically demanding environments during aerospace missionscan place undue thermal stress on pilots and astronauts due to lack of acclimation, among other factors. In particular,
heat stress in pilots can, for example, stem from high physiological and cognitive workloads during complex mission
tasks, heat dissipation impairment due to layered protective wear, radiating heat from the avionics and airframe, and
higher temperatures in the cockpit compared to the ambient temperature [1]. Prolonged exposure to these conditions can
hinder the body’s ability to regulate core body temperature (thermoregulate) and lead to degradation in the cognitive
performance of pilots [2], increasing the likelihood of an accident. The physiological demanding aspect of extreme
environments comes naturally in military aviation due to the level of peak performance required from pilots. The other
aspect of extreme environments, intense heat, does not only encompass high ambient temperature environments (e.g.,
arid deserts, high-humidity tropical climates) that airfields may be located in, but also heated environments due to other
internal (e.g., psychophysiological) and external (e.g., vehicle, equipment) heat stressors acting on the pilot. These
sources of heat stress and others are presented in Fig. 1.
Core body temperature is a key biological indicator of the effects of physiological stress and physical activity on

human performance. Careful monitoring of core body temperature can prevent or mitigate physiological strain produced
by heat stress [3]. This is especially important in environments that demand peak performance to operate within them or
environments that subject personnel to high temperatures. These types of extreme environments can extend beyond
the cockpit of an aircraft and into space missions [4, 5], boots on the ground military operations [6], and professional
sports [7]. Consequently, insight into extreme aerospace environments can be gained by studying thermal environments
in professional sports, such cycling and automobile racing, where participants can experience abnormally high body
temperatures [8, 9]. Failure to track core body temperature and stay within thermoregulatory limits, increases the
likelihood of diminished performance and harm to the individual.
To measure core body temperature, traditional methods require the use of ingestible core temperature capsules or

rectal probes. These invasive methods cannot be reused or retrieved after they have passed through the body. Moreover,
if they have not sufficiently made their way down the digestive tract, ingestible core temperature capsules are known to
be susceptible to changes in temperature due to the consumption of hot or cold beverages [10]. Thus, accuracy and
precision of the measurement are constrained by the timing of the consumption of the ingestible sensor and the duration
that the sensor stays within the digestive tract. This creates cost concerns and limitations, since several probes are
typically required for each subject to maintain reliable and consistent core body temperature measurements.

Prior Work. Noninvasive methods for estimating core temperature which rely on Kalman filters, and its variants,
have been proposed throughout the literature for different populations [11–14]. Though these studies address the
estimation of biological indicators of heat stress, the over-reliance on controlled environments or specific exercises by
some of them to simulate activity in extreme environments reduces the applicability of their methodology for aerospace
missions or other extreme environment scenarios. Moreover, studies that focus on real world environments only tend to
consider the heat stress build-up caused by protective equipment and not the added physiological stress imparted on
the individual by complicated vehicle maneuvers (e.g., g-forces on pilots) and radiating heat from vehicle equipment.
This raises one fundamental research question, when compared to previous studies, can we achieve similar predictive
performance of core body temperature in extreme environmental conditions using noninvasive mobile biosensors?

Challenges. One of the most significant problems when studying thermal stress or other physiological systems within
aerospace environments is the difficulty obtaining the approval and validation that the additional sensors added do not
impact safety, especially in military aircraft [15]. These safety concerns range from the interference of sensitive electronic
equipment to sensors causing physical obstructions during emergency ejections. Thus, simply adding additional human
wearable sensors within an aircraft takes numerous exploratory safety tests causing experimental constraints in money
and time. Furthermore, once human data collection is approved within the cockpit, an uncontrollable number of factors
in this complex environment still exist that can affect the quality of the experimental data. These factors include physical
vibrations of the equipment, electromagnetic interference, and multiple concurrent physiological stressors on the human.
These physiological stressors are precisely the reason the algorithm approach is challenging. For example, while the
pilots are being subjected to high thermal stress from temperatures inside and outside the cockpit, they also have to
contend with intense g-force maneuvers, poor heat dissipation, regulated breathing, chest-wall constriction, and high
cognitive workloads while being confined to their seating position for prolonged periods.

Insights. Due to the difficulty of measuring thermal stress within pilots, an experimental analog to mimic similar
environmental and concurrent physiological conditions can be created through monitoring high-performance race car
drivers. The conditions experienced by sports car drivers are perfect for studying thermoregulatory strain caused by the
operation of performance demanding vehicles in heat stressed environmental conditions. Furthermore, similarly to
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Fig. 1 Examples of external (dashed arrow) and internal (empty arrow) heat stressors experienced by pilots and
drivers.

pilots, drivers also face the build-up of internal stress from using protective body equipment for several consecutive
hours and the physiological stress imposed by the vehicle maneuvers. Radiating heat sources and temperatures upwards
of 50◦C [16] inside the cockpit further contribute to the thermal load on the driver.
Due to advancements in noninvasive wearable technology, the sensors in these devices are capable of measuring a

plethora of biological signals such as heart rate, skin temperature, breathing rate, etc. To increase the accuracy of core
temperature estimation, we incorporate other modalities such skin temperature readings into the estimation process.
The use of skin temperature or other biological signals besides heart rate has not seen much attention outside medical
settings, where, under stable environmental conditions, reliable estimates can be obtained.

Contributions. This study lays the foundation for potentially utilizing high performance race car driver data as an
analog for human data collection within aerospace applications. Furthermore, we demonstrate the ability to estimate
core temperature under the environmental conditions experienced by professional race car drivers which can then be
later translated to aircraft pilots. Due to other environmental conditions causing concurrent physiological stressors, we
gain algorithmic insights on how to improve the prediction of core body temperature for future work.

III. Background

A. Participants
The data was collected from 4 male sports car drivers, between the ages of 25 and 42 years old, at 7 different

raceways during the 2017 season of the IMSA Continental Tire SportsCar Challenge. Approval was obtained from the
Institutional Review Board prior to the start of the study. Two of the participants were professional drivers and the other
two were amateur drivers. All participants belonged to the same racing team and operated identical cars. Therefore, all
drivers experienced relatively the same amount of physiological stressors of g-force, temperature, and other factors.

B. Data Collection
The drivers ingested an Equivital VitalSense core temperature probe and were equipped with the Equivital

LifeMonitor ambulatory monitoring system (EQ02) prior to entering the race car. The EQ02 was strapped over the
chest of the drivers and captured heart rate and skin temperature. Both heart rate and skin temperature readings were
captured every 15 seconds simultaneously. The EQ02 was also responsible for receiving the measurement transmissions
of the core temperature probes ingested by the drivers. The probes provided the ground truth measurements for core
temperature. Each probe was single use and transmitted a temperature reading about every 15 seconds, with occasional
dropouts and irregular sampling intervals.
A total of 28 different races were captured in the original dataset. During each race, two drivers, one professional and

one amateur, were selected to pilot a race car, with the control of the car switching from one driver to the other at some
point in the middle of the race. Data collection started a few minutes before the race and ended at a nonpredetermined
time during or after the race. The length of the races ranged from 1.5 to 4 hours depending on the exact distance of the
race. Additional details of the data collection process and races can be found in [17].
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(a) (b)

Fig. 2 Example of the signal processing done on the (a) heart rate signal and (b) skin temperature signal. The
light colored signal is the original and unfiltered signal. The darker signal has been processed.

C. Measurements Processing
The heart rate, skin temperature, and core temperature measurements were inspected manually to remove corrupted

data and other errors. From the original 28 samples (i.e., races), 13 samples exhibited anomalies in the ground truth
core temperature measurements obtained by the ingestible core temperature capsule. These anomalies included core
temperature data dropouts for most of the data collection period and rapid downward changes in core temperature of
more than 8◦C per minute. We attribute the former anomaly to electromagnetic interference with the low frequency
radio waves transmitted by the capsule [18], and the latter anomaly to the rapid consumption of cold fluids before the
capsule had traveled sufficiently far into the digestive tract. As previously discussed, core temperature capsules are
susceptible to these types of rapid changes in temperature, thus rendering some readings invalid for our study.
After we removed the samples that featured the aforementioned anomalies from the data, the number of samples

decreased to 15. These samples were further filtered to remove periods before and after experiment where the EQ02
was no longer strapped to the chest of the drivers and reported false readings. Additionally, heart rate readings with
a confidence value of less than 80% were removed. These confidence values were provided by the EQ02, one for
each heart rate reading. Due to the signal dropouts in the temperature capsule, the timestamps of the core temperature
readings did not necessarily match the timestamps of the heart rate and skin temperature readings. To produce the
ground truth core temperature readings, we resampled the core temperature signals using linear interpolation to match
the timestamps of the heart rate and skin temperature readings. To finalize the processing phase, the heart rate and skin
temperature signals from each sample were passed through a 5-sample median filter to attenuate sharp spikes or outliers
in the signals due to noise. No further filtering was done to the signals to properly capture the noise characteristics
during the model learning stage of our methodology. An example of the aforementioned signal processing is shown
in Fig. 2.

IV. Methods

A. Kalman Filter
The Kalman filter used in this study is broken down into two steps: a prediction and an update step. In the prediction

step, the core temperature evolves according to the time update model:

𝐶𝑘 = 𝐶𝑘−1 + 𝑤𝑐
𝑘 , (1)

where 𝐶 is the core temperature, the subscript 𝑘 denotes the time step, and 𝑤𝑐 ∼ N(0, 𝜎2𝑐 ) is zero-mean Gaussian noise
with variance 𝜎2𝑐 . The hat denotes a value before the update step. The uncertainty in the core temperature prediction is
captured by the state variance

𝑝𝑘 = 𝑝𝑘−1 + 𝜎2𝑐 . (2)
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In the update step, when a measurement of heart rate or skin temperature is provided to the Kalman filter, the
following observation model is used to predict the measurement:

�̂�𝑘 = 𝑏1𝐶𝑘 + 𝑏0 + 𝑤𝑦

𝑘
, (3)

where 𝑦 denotes either a heart rate measurement 𝐻 or a skin temperature measurement 𝑆, and 𝑤𝑦 ∼ N(0, 𝜎2𝑦 ). The
coefficients 𝑏1 and 𝑏0 of the model are obtained from linear regression. Using the observation model, we can write the
other equations used in the Kalman filter. The Kalman gain is calculated using

𝐾𝑘 =
𝑝𝑘𝑏1

𝑏21𝑝𝑘 + 𝜎
2
𝑦

. (4)

The final two equations in the Kalman filter update the state prediction 𝐶𝑘 and its variance 𝑝𝑘 :

𝐶𝑘 = 𝐶𝑘 + 𝐾𝑘 (𝑦𝑘 − �̂�𝑘) (5)
𝑝𝑘 = 𝑝𝑘 (1 − 𝐾𝑘𝑏1), (6)

B. Model Coefficients Calculation
The 15 races available after processing the original data were partitioned to create training and validation sets

using 𝑘-fold cross-validation. The decision to use this form of cross-validation was to avoid reducing the number
races further if we performed a percentage split of the data. Moreover, the collection of the time series data for each
driver and raceway into a separate archive made each race easily amenable to act as a fold. During each iteration of
the cross-validation procedure, 14 folds were used to learn the model coefficients in Eqs. (1) and (3), and remaining
fold was used for validation. The coefficients in the observation models are calculated using linear regression with an
ordinary least squares loss function. We justify our use of linear models due to the robustness of the Kalman filter under
nonideal conditions. Studies such as [19, 20] have used nonlinear models for heart rate and skin temperature, though
with minimal gain in performance. With the use of more complex models with a variant of the Kalman filter, careful
consideration must be taken to avoid overfitting.
The variance 𝜎2𝑐 of the noise used in the time update model is obtained by performing a Gaussian distribution fit

of the core temperature differences 𝐶𝑘 − 𝐶𝑘−1. The variance of the distribution fit is set equal to 𝜎2𝑐 . This assumes
that the core temperature differences are normally distributed with zero mean, which is an assumption made based
on empirical evidence in similar studies [13]. The variance 𝜎2𝑦 for a sensor measurement in the observation model is
obtained differently. After calculating the coefficients of the model using linear regression, the standard deviation 𝜎𝑦 is
taken as the RMSE between the readings predicted by the linear model and the actual readings. From this, we obtain 𝜎2

ℎ

and 𝜎2𝑠 for heart rate and skin temperature, respectively.

C. Performance Metric and Summary
To measure the performance of our method, we compute the RMSE between the true set of core temperature readings

{𝐶𝑘}𝑁𝑘=1 provided by the core temperature probe, and the set of estimated readings {𝐶𝑘}𝑁𝑘=1:

𝐸RMSE =

√√√∑𝑁
𝑘=1

(
𝐶𝑘 − 𝐶𝑘

)2
𝑁

A summary of our Kalman filter approach for estimating core body temperature is given in Algorithm 1.

V. Results
The model fits obtained for the observation models Eq. (3) are shown in Fig. 3(a) & (b). The linear regression

coefficients for heart rate and skin temperature are summarized in Table 1 for the first training set. The variances used in
the observations models are also provided in the table. Other training sets exhibited similar coefficients. A normalized
histogram and a Gaussian distribution fit of the core temperature differences is provided in Fig. 3(c). The distribution is
for core temperature differences 15 seconds apart. This is equal to the time step duration of the Kalman filter. The
variance of the fit is provided in Table 1 for the first training set. The linear fit coefficients for the time update model are
omitted because they do not apply to the model.
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Algorithm 1 Core temperature estimation using Kalman filter
1: Inputs: 𝐶, 𝐻, 𝑆 regression coefficients and variances; known initial 𝐶, 𝐻 readings {𝐻𝑘}𝑁𝑘=1; 𝑆 readings {𝑆𝑘}

𝑁
𝑘=1

Outputs: core temperature estimates {𝐶𝑘}𝑁𝑘=1
2: for each time step 𝑘 do
3: predict core temperature using (1) & (2)←− 𝐶𝑘 , 𝑝𝑘
4: for each observation (𝑦𝑘 , 𝜎2𝑦 ) do
5: compute Kalman gain using (4)←− 𝐾𝑘

6: update core temperature estimate using (5) & (6)←− 𝐶𝑘 , 𝑝𝑘
7: end for
8: end for

Table 1 Training Set 1: Coefficients and variances for time update (𝐶) and observation models (𝐻, 𝑆)

Model 𝑏1 𝑏0 𝜎2

𝐶 — — 3.676 ×10−5

𝐻 51.92 -1858 453.2
𝑆 2.286 -50.12 0.962

(a) (b) (c)

Fig. 3 Training Set 1: Linear regression for (a) heart rate and (b) skin temperature. For (a) and (b), the linear
trend is shown in solid black and 2𝜎 bounds are shown in dashed black. (c) Normal distribution fit for core
temperature differences.

The results of using the Kalman filter across all validation sets are shown in Fig. 4 and in Fig. 5 in the Appendix.
The true vs. estimated core temperature readings are shown in Fig. 4. Ideally, the majority of the data should lie along
the identity line, with minimal deviation from it. The performance achieved by the Kalman filter on the validation sets
was an 𝐸RMSE = 0.249 ± 0.0955◦C (mean ± standard deviation, SD), assuming a normal distribution of the error. The
error spread can be visualized in Fig. 4(b). In the Appendix, Fig. 5 provides the Kalman filter core temperature estimates
of all validation sets.

VI. Discussion
Despite the violation in the linear model assumption, the linear regression results in Fig. 3 show that the linear fits

for heart rate and skin temperature capture the general trends in the data to a great extent. This is in agreement with the
studies discussed in the prior work that also use linear models to relate core body temperature to heart rate and other
modalities. That being said, upon closer inspection, the imperfections in the fits become more noticeable. For example,
the 2𝜎 (±2 SD) bounds for the heart rate fit, shown in Fig. 3(a), leave out more heart rate measurements in the core
temperature range of 37.75–38.5◦C than in the ranges found at the extremes of the data points. These data points may
include elevated heart rate readings caused by g-force oxygen deprivation as the driver begins to get acclimated to the
race and the core temperature has not reached peak value (greater than 38.5◦C). The large and uneven distribution of the
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(a) (b)

Fig. 4 Kalman Filter Results: (a) True core temperature readings from the validation set plotted against the
estimated readings. The linear trend of the data is shown as a thick dashed line. The identity line is shown as a
thin solid line. (b) RMSE distribution of the validation sets.

data points in this range contributes to the rapid overestimation and, in particular, underestimation that occurs when
starting out near these core temperature values, especially when the only core temperature reading assumed to be known
(i.e., provides a correction) is the one at the beginning of the estimation. Examples of the rapid deterioration of the core
temperature estimate due to underestimation can be found in the subplots for Validation Sets 1, 4, 8, and 10 in Fig. 5.
Similarly, the skin temperature fit shown in Fig. 3(b) also violates the linear relationship between skin temperature

and core temperature below a core temperature of 38.25◦C, as indicated by the branching out of the data points in many
directions. We attribute the branching out to the “warm-up” period exhibited by the skin temperature sensor in the
EQ02 sensor suite. During the warm-up period, which varies in length between races and drivers, the skin temperature
readings climb from a “cold start” value to a value that reflects the approximate skin temperature at the sensor location.
Beyond this skin temperature value, the relationship between skin and core temperature becomes more linear. The
warm-up period is caused by the inhibition of heat dissipation through perspiration by the insulated race suit on the
drivers [21]. This can potentially lead to severe dehydration through excessive sweating if the driver does not hydrate
adequately. The warm-up period can be visualized in Fig. 2(b), although to a lesser degree than in other samples, as the
skin temperature climbs from approximately 31◦C to 34◦C in the span of half an hour, before climbing again at the start
of the race near the 2-hour mark. The skin temperature readings collected during the warm-up period must be carefully
processed, as simply discarding them negatively impacts the performance of the Kalman filter, possibly due to creation
of a less generalizable model, albeit a more linear one.
Further analysis of the estimates produced by the Kalman filter across all validation sets provides us with invaluable

insight for future improvements to our experimental design. For example, the group of outliers present above the main
linear cluster was a direct consequence of the rapid decrease in core temperature at the end of Validation Set 2, shown in
Fig. 5. Rapid changes in core temperature, also exhibited in the other validation sets to a lesser extent, are not tracked by
the Kalman filter very well due to the higher trust that is placed on the time update model compared to the observation
models. Thus, the Kalman filter reacts slowly (i.e., it is not as responsive) to rapid changes in core body temperature.
Additionally, as previously discussed, large underestimation errors tend to occur near the core temperature range of
37.75–38.5◦C at the beginning of the estimation process. A complementary explanation to this peculiarity is explained
by the variance in the baseline heart rate readings that the drivers exhibited at the beginning of each race, explaining the
poor fit in the lower heart rate extreme in Fig. 3(a). These differences in baseline heart rate contributed to the poor
performance of the Kalman filter prior start of the race, and the lift in performance that occurred during and after the
race, where the heart rate and core temperature model is shown to have a more pronounced linear, yet still unevenly
distributed, relationship due to the driver’s elevated core body temperature. Relatedly, the heart rate model resulted in
large overestimation errors when the true core body temperature was not sufficiently high enough (e.g., greater than
38.25◦C), as shown in Validation Set 13, Fig. 5.
In spite of the imperfect linear fits and the influence of numerous stressors on the readings, the Kalman filter we
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used resulted in an RMSE of 0.249 ± 0.0955◦C with a median of 0.205◦C as shown in Fig. 4 . This error is comparable
to the RMSE obtained in [19] of 0.23 ± 0.08◦C when validated on U.S. Marines on patrol missions in 42–47◦C weather
in Iraq, and an improved model proposed in [13] with an RMSE of 0.28◦C. We note that the authors in the former study
only relied on heart rate measurements, used a quadratic fit for their nonlinear heart rate and core temperature model,
and used training data from 17 U.S. Army soldiers during field training in 24–36◦C humid weather. The authors in
the latter study included a mixed population of men and women, with 17 of the 25 volunteers being the U.S. Army
soldiers from the former study, and used a sigmoid function for their nonlinear model. Thus, a true direct performance
comparison between our study and others is difficult due to the use of different populations for model training. Moreover,
even with more complex models and estimation methods, uncontrollable variables in the data collection process will
result in similar performance across studies, especially when the behavior of heat stress indicators is greatly affected by
the environment and other psychophysiological factors.

VII. Conclusion
The performance of our method can be further improved through the use of higher orders models for heart rate

and skin temperature, although these models tend to yield only slightly better performance. This can be achieved by
performing informed feature extraction on the predictor signals (e.g., heart rate, ECG, etc.) to create new predictor
signals. Furthermore, by identifying key states in these new signals, piecewise linear models amenable to Kalman
filter, or Kalman filter variants, can be used to maintain simplicity. Relatedly, the performance of our method can also
be improved by carefully studying the effects of other stressors that are characteristic of pilots and drivers, such as
dehydration and g-forces. Nonetheless, the core temperature estimation method we proposed in such an unparalleled
and complex environment (e.g., closed cockpits with radiating heat and layered body equipment) compared to other
open world environments, such as cycling, was able to produce comparable performance when the supplementary
physiological features and sensors were added to the Kalman filter. This work showed that the use of a linear Kalman
filter is robust to the poor linear regression fits not strictly due to heat stress but rather dynamic and sporadic changes
within the physiology due to g-force stresses, and mental workload and fatigue during driving, similar to flight. As
the movement for physiological monitoring sensor systems for pilots continually develops [15], this will support more
advanced algorithms that require additional physiological sensors and features for improved monitoring of thermal
stress and other human performance decrements that occur in flight [22–24].

Appendix
The following appended figures discussed in the results section, provide a graphical view of the error that is

quantitatively explained using the RMSE value across all 15 validation sets. This provides a tertiary view to understand
the Kalman filter core temperature estimates across all the validation sets, shown in Fig. 5.
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