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With the projected increase in passenger load factor and rollout of more autonomous
systems into the national airspace, the need to detect high-risk events in-time or ahead-of-time is
becoming increasingly crucial. New anomaly detection and precursor identification algorithms
will need to scale to different airframes, levels of autonomy, and system complexity. While
the pervasiveness of deep learning has resulted in the development of performant anomaly
detection methods, these sophisticated models currently suffer from low end-user interpretability.
Building off our previous work on identifying adverse events in multivariate flight data during
descent, we propose a data-driven approach for detecting in-flight adverse events caused by
the complex interplay of flight variables. Our approach utilizes ordinal patterns of important
aircraft stability variables (e.g., airspeed and descent rate) to capture multivariate flight
dynamics that can be used to predict the onset of unstable approaches, a high-risk adverse
event that can occur during approach. Through the use of ordinal patterns, we aim to create
more interpretable detection models of in-flight adverse events that can be used to gain insight
on future autonomous systems and make model translation to different airframes less difficult.
Our analysis shows the presence of distinct ordinal pattern distributions that can be used to
predict unstable approaches 1 minute ahead-of-time with an accuracy of 0.69 and a recall of
0.73 and 30 seconds ahead with an accuracy of 0.70 and a recall of 0.86.

I. Introduction
Despite efforts by aviation agencies to continue driving down safety metrics beyond target thresholds, high-risk

events such as instability during landing approach remain a present danger to passenger safety. Approach instability and
other in-flight adverse events, or anomalies, possess hidden signatures that may go undetected until its offset, where the
risk to aircraft integrity and passenger safety increases substantially. To identify adverse events ahead-of-time, a shift
away from univariate threshold exceedance methods has resulted in the proliferation of more sophisticated anomaly
detection and prediction methods [1–4]. While an improvement over univariate techniques, these newer methods tend to
lack the interpretability of exceedance-based methods, resulting in poor actionable information and intuition for the
end-users, such as pilots and air traffic services. As air traffic continues to increase [5, 6] and more types of aircraft
with varying degrees of autonomy are introduced into the national airspace system (NAS) [7–9], the need for not only
robust but also interpretable adverse event detection becomes evident. Detection models with high interpretability
allow the users or decision makers to associate specific aircraft states to normal or anomalous aircraft operation and
make informed decisions. This direct link to the underlying state of the aircraft enhances the generalizability of an
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interpretable paradigm, allowing users to translate their model knowledge to future airframes with reduced retraining
and difficulty. To this end, this study focuses on the design of an interpretable method for detecting adverse events
ahead-of-time by analyzing the multivariate state of the aircraft, rather than the single-signal analysis of traditional
methods. We establish the viability of our method by applying it to instability prediction during descent, where we
provide a straightforward prediction modeling approach without relying on complex machine learning (ML) models.

Prior Work. Work in adverse event detection can be grouped into two categories: in-time and ahead-of-time
detection. Traditional in-time detection relies on threshold exceedance and simple statistical comparisons of individual
variables (univariate) to identify anomalous aircraft conditions [10]. While being highly interpretable, these methods
fail to scale to the more elaborate patterns of failure of today’s complex aviation systems [11, 12]. Moving away from
exceedance-based methods while retaining model interpretability, our work in [4] has shown the applicability of entropic
methods, which quantify the regularity or predictability of a signal, in detecting unstable approaches. According to
the FAA, an approach is considered unstable when at least one the variables in [13] (e.g., airspeed or vertical speed)
linked to stability exceeds a predefined threshold. Failure to maintain a stable approach can result in accidents such
as rough landings, runway excursions, and terrain or infrastructure collision [14]. Due to the prevalence of accidents
during approach and landing [15], the detection of approach instability is vital for airlines and manufacturers to continue
reducing the number of in-flight accidents. Despite the pertinent work in anomaly detection in [4], its design does not
provide a discrete, multivariate view of the aircraft’s state, which can enhance the interpretability of the flight dynamics
associated with an anomaly. The need to track how all relevant variables are interacting and evolving during an unstable
approach to improve detection motivates the following question: How can flight dynamics be captured by multivariate
entropic analysis methods and linked to approach instability?

In ahead-of-time adverse event detection, a growing trend over the last decade has been the identification of
precursors from multivariate flight data. Precursor are key events that manifest prior and are associated with the onset of
adverse events [16]. A precursor can be the adverse interplay between multiple flight variables, such as high airspeed
and incorrect flap position prior to landing, or a single failure event like a sensor malfunction or variable threshold
exceedance. The ability to predict an adverse event, like an unstable approach, using precursors can reduce the severity of
the adverse event or potentially prevent its onset through corrective action. At the forefront of precursor mining methods
are deep learning (DL) models. Recently, work in [17] has demonstrated the effectiveness of using multiple-instance
learning, a form of weakly-supervised ML, and deep neural networks to identify precursor events. Similar DL methods
such as [16, 18] have also demonstrated progress towards interpretable deep learning models. However, despite their
pervasiveness, DL methods lack the level of precursor or feature interpretability commonly found in traditional ML and
data analysis. A certain level of interpretability is required to not only inform the user of an imminent risk, but also
provide the information and means for the user to take corrective action. Therefore, the multivariate nature of anomalies
must be summarized in a way that is presentable and understandable to pilots and air traffic services. The prediction of
adverse events using multivariate precursors raises another question: Can the features captured by multivariate entropic
analysis methods be used to create more interpretable prediction models of unstable approaches?

Challenges: One of the leading challenges with adverse event detection is determining the cause of the adverse event.
Due to potentially intricate and multivariate nature of failure patterns in today’s aircraft, univariate exceedance-based
methods are becoming less and less capable of detecting complex interactions in the flight dynamics. Nowhere is
this is more evident than in the Lion Air fatal accident due to a design flaw in the Boeing 737 MAX’s Maneuvering
Characteristics Augmentation System (MCAS). The MCAS was designed to stabilize the aircraft at high angles of attack
by pitching the aircraft down. Human factors aside, the aircraft exhibited series of precursor events, such as sensor
readout differences in airspeed and altitude, prior to the catastrophic crash [19, 20]. This type of cascading, multivariate
aircraft failure is difficult to frame in terms of threshold-exceedance monitoring. A different detection paradigm is
therefore required to monitor the state of multiple aircraft variables and link the state with a high-risk condition of the
aircraft. Despite their ability to handle multivariate flight data, DL models suffer from reduced interpretability compared
to traditional anomaly detection methods. A high level of model interpretability allows the end-user to link the risk of
adverse event to the underlying state of the aircraft in terms of an intuitive physical quantity, rather than something
abstract. The low interpretability of DL models may pose a challenge when implementing them in actual safety systems,
where model interpretability may be deemed a more important factor than performance. Moreover, despite progress in
interpretable DL in aviation applications [21], DL models may not be able to seamlessly translate to other, present and
future, aircraft. This is due to their need to be trained on specific patterns of failure of an aircraft using large quantities
of training data. Therefore, non-ML models can often lend themselves to not only higher interpretability, but also better
generalizability, due to their simpler design and intuition of their inner workings.

Insights. As the complexity of aviation systems continues to grow, a shift away from traditional exceedance-based
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methods for in-flight risk identification is necessary. Despite the popularity and performance of DL models, there is still
room for improvement, especially in model interpretability [22]. An alternative approach to flight data analysis, one
that does not depend on sophisticated ML, comes from the field of entropic time series analysis. Entropic analysis
relies on the notion of Shannon entropy [23] to quantify the degree of complexity in a dynamical system. Complexity
is the degree of order or regularity present in a signal [24, 25]. Signals that exhibit discernible and often repeating
patterns tend to have a relatively low complexity compared to signals with highly irregular patterns. Our previous
work on anomaly detection has demonstrated the viability of using entropy to build explanatory models for unstable
approaches. To extend our prior work to multivariate problems and capture the complex interactions between multiple
flight variables, we can analyze the ordinal patterns present during and prior to the occurrence of an adverse event.
Ordinal patterns are a tool from entropic analysis that capture the ordering, or ranking, of multiple signals at any point in
time. The illustration of ordinal patterns in Fig. 1 shows the ranking of three signals, which provide a discrete snapshot
of the multivariate state of the system. The use of ordinal patterns on flight data can reveal hidden aircraft states that
have a high likelihood of appearing prior to an adverse event or during its onset. Importantly, ordinal patterns possess a
high level of interpretability due to the plain variable rankings that are summarized within them. These patterns can be
used to create simple predictive models that maintain the same level of interpretability of the patterns and allow us
to gain insight on high-risk aircraft states. The identification of generalizable high-risk states in today’s aircraft has
important implications on the design considerations of future aircraft operating with reduced human intervention.

Time
0 s

Signal value

4 s 8 s
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2

3
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anomalous state

Fig. 1 Explanatory figure on ordinal patterns. Ordinal patterns provide a simple approach to modeling the
multivariate interactions of flight variables by looking at how signals are ranked, or ordered, at any point in time.
The specific variable interactions between 3 and 5 seconds (i.e., the ordinal pattern (1, 2, 3) when S1 ≤ S2 ≤ S3),
may indicate the presence of an adverse event or its precursor. This and other ordinal patterns may manifest
prior to and during adverse events. The occurrence of an ordinal pattern may suggest the current or future
presence of an adverse event.

Contributions. Using ordinal patterns, our aim is to create simple, highly-interpretable prediction models of
unstable approaches. More specifically, our work in this study provides the following contributions to interpretable
multivariate analysis and prediction of unstable approaches:

• We provide the means for measuring the distance between two ordinal patterns to quantify the degree of similarity
of the patterns. This is used to explore differences in the flight dynamics of stable and unstable approaches.

• We show that ordinal patterns not only provide an interpretable method to characterize the multivariate flight
dynamics of an aircraft, but they also serve as precursors of unstable approaches. Precursor patterns reveal aircraft
states that have a higher likelihood of occurring in stable approaches.

• Using Bayesian analysis and ordinal patterns, we provide a predictive modeling methodology capable of detecting
approach instability up to a minute ahead-of-time, while maintaining a high level of model interpretability.
Predictions of future instability can alert or provide decision support to pilots and air traffic services to bring the
aircraft back into a stable configuration.

The above findings allow us to gain algorithmic insight into what variable interactions are most important in identifying
and preventing adverse events during approach and landing. This analysis can help us better understand high-risk states
of current and future autonomous aircraft. Details of our methodology are provided in the following Methods section.
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II. Methods
The crux of our methodology is the identification of ordinal patterns (summarized in Fig. 1) in multivariate,

heterogeneous flight data during periods during and prior to the occurrence of an adverse event. These patterns are then
used to create models capable of predicting aircraft instability during approach. We refer to heterogeneous flight data as
a collection of flight signals where each signal has a different set of possible values and value ranges. For example, the
range and values of an aircraft’s airspeed is different from the values of a landing gear binary switch that is engaged on
approach. Extra care and processing must be taken to make meaningful comparisons between the values of the two
signals. A time series normalization technique is discussed later in this paper that brings the analyzed flight variables to
a common value range. The ordinal patterns are extracted from flight data starting at five minutes prior to landing to
when the aircraft makes contact with the runway. As previously mentioned, unstable approaches are a leading adverse
event that can occur during the approach and landing phases of an aircraft. Due to the high danger they pose to human
life, unstable approaches are the main focus of our analysis.

By characterizing the ordinals that manifest during periods of instability, our aim is to link the presence of certain
ordinal patterns to periods of instability during the flight. This characterization will help us build simple and interpretable
predictive models that can identify an unstable approach prior to the stability check window that occurs between 500 and
1,000 ft above the runway, as shown in Fig. 2. Before creating these predictive models, however, we must first perform
other tasks, such as the categorization of flights as stable or unstable. This is accomplished through the use of traditional
threshold exceedance criteria provided by aviation regulatory agencies [13]. This is followed by the extraction of ordinal
patterns during periods of instability. Using this, we provide explanatory analysis on the link between ordinal patterns
and the unstable dynamics of an aircraft. This analysis aids us in building predictive models to detect instability at
various time checkpoints prior to the aircraft’s descent below 1,000 ft.

Stability check

5-minute time series saved prior to landing

Fig. 2 Descent profile of a stabilized approach as per the FAA [26]. For a flight with successful touchdown, the
determination of an unstable approach is made during the Stability check flight window marked in red. The
ordinal patterns we analyzed were collected over the 5-minute flight window prior to touchdown marked in yellow.

A. Identification of Unstable Approaches
Before explaining the criteria used to identify unstable approaches, we provide an overview of the dataset used and

the preprocessing performed on the flight data.

1. Dataset Overview and Preprocessing
The publicly available NASA DASHlink Sample Flight Data [27], hereafter referred to as the flight data or, simply,

the dataset, provides anonymized flight data from a domestic regional airline. The dataset contains flight data from
35 regional jets, also referred to as tails, recorded over the time span of 2001-2004. The manufacturer and model of
the aircraft are not provided in the dataset. Each tail comprises approximately 5,000 individual flight files on average,
with a grand total of 180,000 flights in the entire dataset. Each flight file is saved in the MATLAB (The MathWorks,
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Inc.) MAT binary format and contains the time series of 186 different flight variables such as airspeed, flap position,
and flight phase∗. With the exception of wind speed and wind shear alerts, no other environmental flight variables are
provided in the dataset. The sampling rate of the signals varies from 0.25–16Hz, with a median sampling frequency of 4
Hz. Unless otherwise noted, the flight variables analyzed in this study were resampled at a rate of 4 Hz using previous
value interpolation to maintain a consistent sampling rate across all flight variables. After resampling the signals to a
common sampling rate, a 10 second (40 samples at 4 Hz) moving median filter was applied to the data. The median
filter provided light noise filtering of the data while, more importantly, not altering the possible values of integer-valued
signals, such as the weight-on-wheels signal with values of either 0 or 1.

Following the filtering of the flight signals, several condition checks were applied to each flight to determine if
the flight data was valid. Invalid flights were discarded from the dataset and valid flights were kept for subsequent
processing. This further processing is discussed in later sections. A flow chart of the logic used to determine valid
flights is provided in Fig. 3. This process resulted in the elimination of approximately 30,000 flights out of the original
180,000. Following this elimination process, valid flights were searched for their touchdown point or, in the case of a
rejected landing, the point of the aircraft’s lowest height above ground level (AGL) before commencing a go-around.
With this information, we proceeded to the identification of unstable approaches.

FLIGHT
DATA

DOES AIRCRAFT
CLIMB ABOVE

1,000 FT ON TAKEOFF?

DISCARD
INVALID
FLIGHTDOES AIRCRAFT

HAVE AN
APPROACH PHASE? DOES APPROACH

PHASE MEET THE
MINIMUM DURATION? DOES AIRCRAFT

DESCEND BELOW
1,000 FT ON APPROACH? DOES AIRCRAFT

EXIT APPROACH
PHASE?

KEEP
VALID

FLIGHT

NO

YES

NO

YES

NO

YES
NO

YES
NO

YES

Fig. 3 Flight data validation logic. Approximately 30,000 flights (out of total of 180,000) were discarded using
these condition checks.

2. Instability Criteria and Identification of Unstable Approaches
The determination of the stability of a flight during approach was made using FAA guidelines on stabilized

approaches [13]. According to the FAA [26], a stabilized approach is “one in which the pilot establishes and maintains
a constant angle glidepath towards a predetermined point on the landing runway.” Translating the stabilization criteria
to threshold exceedances resulted in searching for the exceedance thresholds in our curated flight data. These thresholds
were derived from aviation agency recommendations [28, 29] and other literature [30]. The stabilization criteria
variables and their threshold values are summarized in Table 1. These variables are computed airspeed (CAS), inertial
vertical speed (IVV), localizer deviation (LOC), and glideslope deviation (GLS). Glideslope deviation tracks the vertical
misalignment from a 3-degree angle between the flight path and the runway, while localizer deviation tracks horizontal
misalignment with the runway centerline. One key omission in the FAA stabilization criteria is the duration that the
instability must be sustained for it to register as an exceedance. This causes a problem when values close to a threshold
cross over momentarily due to noisy sensor readings. To prevent noisy exceedances in our search for unstable flights, we
discarded threshold exceedances sustained for less than 5 seconds. The search for exceedances took place between the
aircraft’s 1,000 and 500 ft altitude descent crossings. In the case of a rejected landing, the lowest height above ground
level before go-around marked the end of the stability check window. This time window for a successful landing is
visualized in Fig. 2.

Table 1 Exceedance events analyzed in this study during aircraft descent. An exceedance of any flight variable
results classification of the approach as unstable.

Exceedance Event Flight Variable Variable Description Condition
Airspeed exceedance CAS Computed airspeed CAS < 110 or > 150 knots
High descent rate during approach IVV Inertial vertical velocity IVV < -1,000 FPM
Localizer deviation exceedance LOC Localizer deviation Magnitude > 3 SD
Glideslope deviation exceedance GLS Glideslope deviation Magnitude > 3 SD

∗More information on the dataset can be found on the dataset’s resources page at https://c3.ndc.nasa.gov/dashlink/resources/901/.
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B. Identification of Ordinal Patterns and Similarity
Ordinal patterns provide information on the state of the aircraft, by encoding the arrangement or ordering of multiple

flight signals at any point in time (see Fig. 1). Symbolic representations of the signals, rather than the signal values
themselves, are stored in a least-to-greatest sorting in the patterns. A change in the ordering creates a different ordinal
pattern. Instead of relying on pure thresholds exceedances that may be statistically but not operationally anomalous,
by capturing ordinals patterns we can provide a multivariate view of how all flight variables of interest are evolving
with respect to each other. This motivates our use of ordinal patterns as a multivariate feature that maintains the
interpretability of the system. The following sections explain our approach to identifying ordinal patterns during descent
and landing of stable and unstable flights. Moreover, we discuss the metric used to define similarity between ordinal
patterns.

1. Data Normalization
Before identifying the ordinal patterns present during an aircraft approach, we first addressed the lack of a common

value range for the signals. That is, each signal is the heterogeneous flight data can take on a different range of values
throughout the flight. For example, the typical range of airspeed signal is anywhere between 0 and 500 knots, while the
range of the integer-valued landing gear down signal is 0 to 1. Naturally, this leads to the problem where airspeed will
be greater than landing gear down over the entire approach phase, not accounting for noise. To address the lack of a
common value range, we used a normalization technique where each signal is mapped to a range approximately between
0 and 1. The range is approximate because some signals will be mapped outside this range. This is a consequence of the
normalization formula

𝑥norm = (𝑥 − 𝑥min)/(𝑥max − 𝑥min). (1)

In the equation above, 𝑥 is a value in the time series of a flight variable, 𝑥min is the 1st percentile minimum value of
the flight variable, and 𝑥max is the 99th percentile maximum of the same flight variable. The values for 𝑥min and 𝑥max
were calculated prior to the normalization using all the available flight data. Therefore, they are not the minimum and
maximum values of the time series being normalized. We selected the 99th percentile highs and 1th percentile lows to
prevent outlier extremum values from reducing the usable range between 0 and 1. Consequently, these outlier values
may lie outside the [0, 1] interval. For example, if we obtained the values 𝑥min = 0 and 𝑥max = 500 (knots) from the
entire ground speed flight data, then a time series with values ranging from 0 to 400 knots would be mapped down to the
unitless range [0, 0.8]. This simple normalization formula allows us to map all the signals to a comparable range while
decreasing the effects of outliers on the usable range.

2. Time Series Extraction and Pattern Identification
With the normalized flight variables, we extracted a 5-minute time series of all flight variables prior to a successful

or rejected landing (see visualization in Fig. 2). At five minutes before landing, an aircraft is approximately 12 nautical
miles (NM) away from touchdown and 3,500 ft above ground level (see Fig. 4). Distances greater than 12 NM put the
aircraft past the effective range of the airport antennas used in the calculation of glideslope and localizer deviation, two
important variables that determine instability. At a uniform sampling frequency of 4 Hz for all flight variables, this
resulted in time series with a length of 1200 samples. Using Fig. 1 as a flight data example, the ordinal patterns tuples
(𝑎, 𝑏, 𝑐) are organized as rows in an 𝑚 × 𝑛 = 8 × 3 matrix

𝚷 =



3 2 1
3 1 2
1 3 2
1 2 3
1 2 3
2 1 3
2 3 1
3 2 1


,

where 𝑚 is the number time steps and 𝑛 is the number of flight variables. The ordering of each pattern was calculated by
sorting the values of the multivariate signal at each time step and saving the integer value (i.e., the symbols 1, 2, and 3)
assigned to each signal. Ambiguity in the order of equal values can be resolved using any tiebreaker method, so long
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as the use of the method remains consistent. Our tiebreaker method was assigning a lower rank (i.e., position in the
ordering) to the first equal value in a pattern vector, moving from left to right.

By assigning a symbol 𝜋𝑖 to each ordinal pattern, we can rewrite the matrix of ordinal patterns as

𝚷 =

[
𝜋6 𝜋5 𝜋2 𝜋1 𝜋1 𝜋3 𝜋4 𝜋5

]𝑇
.

Here, 𝜋1 = (1, 2, 3), 𝜋2 = (1, 3, 2), 𝜋3 = (2, 1, 3), 𝜋4 = (2, 3, 1), 𝜋5 = (3, 1, 2), and 𝜋6 = (3, 2, 1). A valid set of
symbols that can be used in computations are {𝜋𝑖 = 𝑖}6

𝑖=1, so that

𝚷 =

[
6 5 2 1 1 3 4 5

]𝑇
.

This representation of ordinal patterns is useful for storage in computer memory and visualization, as seen later on in
this paper.

Stability check

(a)

Stability check

(b)

Fig. 4 Percentile distribution of (a) height above ground level (AGL) during approach and (b) distance away
from touchdown point. Based on the median, an aircraft crosses the 1,000 ft and 500 ft AGL thresholds at
approximately 96 seconds (3.2 NM away) and 50 seconds (1.6 NM away) prior to landing, respectively. This
results in a stability check window approximately 45 seconds long.

3. Quantifying Similarity of Ordinal Patterns
Attempting to compare two ordinal patterns leads to the natural question of, how can we quantify the distance or

degree of similarity between two ordinal patterns? Due to the arbitrary symbolic representation of a signal in an ordinal
pattern, integers in this study, a distance metric such as Euclidean distance is not ideal. Motivated by the work in string
similarity [31], we define the distance between two equal-length ordinal patterns 𝜋𝑖 and 𝜋 𝑗 using the following recursive
implementation

dist(𝜋𝑖 , 𝜋 𝑗 ) =


0, |𝜋𝑖 | = |𝜋 𝑗 | = 0
dist

(
tail(𝜋𝑖), tail(𝜋 𝑗 )

)
, 𝜋𝑖 (1) = 𝜋 𝑗 (1)

1 + dist
(
[tail(𝜋𝑖), 𝜋𝑖 (1)], 𝜋 𝑗

)
, otherwise.

(2)

In this equation, 𝜋(1) is the first element of 𝜋, |𝜋 | is the length of 𝜋, [𝜋1, 𝜋2] is the concatenation of two patterns, and
tail(𝜋) is the ordinal pattern excluding the first element. This distance metric computes the number of index shifts
required to make 𝜋𝑖 equal to 𝜋 𝑗 . For example, the distance between 𝜋1 = (1, 3, 4, 2) and 𝜋2 = (1, 2, 3, 4) is 2, due to the
two index shifts to the left required to move 2 from the fourth position to the second position in 𝜋1. Normalizing the
value of Eq. (2) by its upper bound equal to

(𝑚
2
)
, where 𝑚 = |𝜋𝑖 | = |𝜋 𝑗 |, we obtain the normalized distance metric

dist(𝜋𝑖 , 𝜋 𝑗 ) =
dist(𝜋𝑖 , 𝜋 𝑗 )

𝑚
(3)
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Using normalized distance, we define the similarity metric between two ordinal patterns 𝜋𝑖 and 𝜋 𝑗 as

sim(𝜋𝑖 , 𝜋 𝑗 ) = 1 − dist(𝜋𝑖 , 𝜋 𝑗 ). (4)

Given 𝑚-length patterns, similarity can take on
(𝑚

2
)
+ 1 values on the interval [0, 1], with a spacing of 1/

(𝑚
2
)

between
successive values. Unless otherwise noted, we refer to Eq. (3) when we discuss the distance between ordinal patterns. In
the example with 𝜋1 = (1, 3, 4, 2) and 𝜋2 = (1, 2, 3, 4), Eq. (4) results in a similarity value of 1− 2/6 ≈ 0.67. Maximum
distance (i.e., minimum similarity) is given by dist

(
(1, 2, 3, 4), (4, 3, 2, 1)

)
, where 6 index shifts are required to turn the

first pattern into the second one, resulting in a similarity of 1 − 6/6 = 0.

C. Explanatory Analysis and Predictive Modeling
Our explanatory analysis consists of comparing the similarity between ordinal patterns that occur during unstable

approaches (unstable patterns) and those that occur during stable approaches (stable patterns). These comparisons are
made during the aircraft’s stability check window between 1,000 and 500 ft above the runway (refer to Fig. 2 & 4)
when an exceedance event is registered. Using Eq. (4) to calculate similarity between stable and unstable patterns, we
then compute the mean and standard deviation of the similarity values to determine the degree of similarity. With this
information, we can establish whether unique ordinal patterns are present during unstable approaches. In addition to this
explanatory analysis, we seek to predict the onset of instability before its actual determination during the flight’s stability
check window. By comparing the probabilities of a flight being stable or unstable, using Bayesian analysis, we perform
a binary classification of the aircraft’s stability, where unstable is the positive class and stable is the negative class.
These predictions are made at various time checkpoints prior to the aircraft’s descent below 1,000 ft. Predictions on
future instability can alert the pilot and air traffic control (ATC) ahead-of-time to perform corrective action to stabilize
the flight.

More specifically, we leverage the flight stability distributions, either stable or unstable, conditioned on the ordinal
patterns. These conditional stability distributions constitute the likelihoods in Bayesian analysis and are formally
expressed as 𝑃(𝑥 |𝜋 𝑗 ). In this notation, 𝜋 𝑗 represents the ordinal pattern assigned the integer 𝑗 (see Table 3), and
𝑥 ∈ {stable, unstable} is the stability of the aircraft. Two likelihoods, one for stable and another for unstable, are
generated from a training set consisting of 8,700 stable flights and 8,700 unstable flights. The underpinning equation
that takes advantage of these likelihoods is Bayes’ rule:

𝑃(𝜋 𝑗 |𝑥) =
𝑃(𝑥 |𝜋 𝑗 )𝑃(𝜋 𝑗 )

𝑃(𝑥) . (5)

Informally, we can rewrite Bayes’ rule as

posterior =
likelihood × prior

evidence
. (6)

This informal representation allows us to identify terms that we have not calculated yet: the prior and evidence. The
prior provides the probability that we observe a specific ordinal pattern while the evidence is the probability that the
aircraft is stable or unstable. The evidence term can be expanded into

𝑃(𝑥) =
24∑︁
𝑖=1

𝑃(𝑥 |𝜋𝑖)𝑃(𝜋𝑖). (7)

Our main interest in the Bayesian formulation is the evidence term. This term, however, still requires us to know the
prior distribution. To solve this, we approximate the prior over non-overlapping 30-second time windows, prior to the
stability check window. The end of these 30-second windows occur at 4.5, 4, 3.5, 3, 2.5, 2, and 1.5 minutes prior to
landing. Thirty-second intervals strike a balance between sufficient ordinal patterns to approximate the prior (120
samples at 4 Hz) and our assumption that the likelihoods adequately model the aircraft’s stability over the interval.
Longer intervals would yield better prior approximations but would allow the likelihoods to change drastically, rendering
them useless. At the end of each time window, we use the likelihoods and prior to calculate the probability of the aircraft
being stable, 𝑃(stable), or unstable, 𝑃(unstable). The highest probability determines the stability classification of the
30-second flight window.
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III. Results & Discussion
This section provides the interpretation of the results of the following research questions (RQs):

RQA Can the flight dynamics from multivariate sensor interactions be mapped to periods of instability using unique
ordinal patterns?

RQB Can we predict unstable approaches using ordinal patterns for more interpretable adverse event detection?
For RQA, we hypothesize the presence of patterns that are unique to unstable approaches. These unique patterns
can help us identify the precise state(s) of the aircraft during instability. Thus, we should observe similarity values
between unstable and stable patterns close to zero with a tight confidence interval (e.g, standard deviation) to indicate
the presence of patterns unique to approach instability. In RQB, we seek to build ahead-of-time instability prediction
models with information on the presence, or absence, of ordinal patterns. Even if no unique patterns exist in unstable
approaches, we hypothesize the presence of distinct pattern distributions (i.e., probability mass functions) at multiple
instances throughout the descent stage that can help us build predictive models to detect unstable approaches ahead of
their onset.

A. Linking Ordinal Patterns to Aircraft Instability
Before moving forward with the analysis of ordinal patterns and instability, we first break down the frequency

that the exceedance events occurred in unstable flights. In total, of 34,500 out of 150,000 flights met the instability
criteria of Table 1. As shown in Table 2, the most occurring exceedance event was vertical velocity (IVV) exceedance,
which occurred in 66% of unstable flights. The next most frequent events, in order, were airspeed (CAS) exceedance
(29%), localizer deviation (LOC) exceedance (21%), and glideslope deviation (GLS) exceedance (13%). Together, the
energy management variables CAS and IVV were responsible for 69.5% of unstable approaches. Exceedance of energy
management variables are known to be large contributing factors of unstable approaches [17, 30]. Therefore, our results
are in alignment with what is reported in literature.

Similarity Results: To determine the link between ordinals patterns and unstable approaches, we measured the
similarity between ordinal patterns in flights that experienced unstable approaches and patterns in flights without
unstable approaches. Both types of patterns, stable and unstable, were collected over the stability check window that
occurs between 500 and 1000 ft above the runway, as visualized in Fig. 2. In particular, unstable patterns were collected
during any of exceedance event windows that could be triggered by the exceedance of a flight variable associated
with an unstable approach (listed in Table 1). These variables associated with the stabilization criteria are airspeed
(CAS), glideslope deviation (GLS), vertical velocity (IVV), and localizer deviation (LOC). Therefore, a maximum of
four exceedance events could occur during a flight. From each exceedance event window in an unstable approach, we
randomly selected 10 ordinal patterns. The same number of stable patterns were randomly sampled from a stable flight
during each exceedance event window of a corresponding unstable flight. Thus, for an unstable flight that experienced all
four exceedance events, 40 random patterns were drawn from a stable flight to make the pairwise similarity comparisons.

To perform the ordinal pattern similarity comparisons using the 34,500 unstable flights, an additional 34,500 stable
flights were randomly sampled from the dataset. This resulted in the calculation of 345,000 of similarity values using
Eq. (4) (10 values per flight). The similarity values for each exceedance event are shown in Fig. 5. In the figure, we
observe the lack of any clear distinction between the similarity of stable and unstable patterns across all exceedance
events linked to instability. Our hypothesis that a mean similarity close to 0, with tight one-standard deviation (SD)
bounds, would have indicated the presence of unique ordinal patterns in unstable approaches is not supported by the large
spread of similarity values in all four exceedance events. However, this large similarity spread suggests the presence of
both similar and dissimilar patterns during each exceedance event. Therefore, despite the lack of evidence to support our
original hypothesis, we may be able to exploit the presence of similar and dissimilar patterns in the predictive models
for RQB. These predictive models can take advantage of the distributions of stable and unstable ordinal patterns, so long
as the distributions are distinct enough prior to the onset of the instability.

Most Occurring Patterns: To shed more light on the similarity results and learn more about the ordinal patterns
present during approach and landing, we extracted the most common ordinal patterns present throughout the 5-minute
time window before landing. That is, at each time step, we found the most occurring (i.e., the mode) ordinal pattern.
These ordinal pattern modes can reveal information on why the similarity values in Fig. 5 exhibit a large spread. Because
the ordinal pattern modes occur more often then any other ordinal pattern, they will have a non-negligible influence on
the similarity mean and standard deviation during the stability check window. The modes were calculated from 2,500
randomly sampled stable and unstable approaches (5,000 flights in total). To visualize these modes, we assigned an
integer value to each of the possible ordinal patterns. Given the 4 flight variables related to flight instability, the number
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Table 2 Frequency of exceedance events during the unstable approach of 34,500 flights.

Exceedance Event Frequency Percentage
Airspeed (CAS) 9,818 28.5%
Glideslope deviation (GLS) 4,400 12.8%
Vertical velocity (IVV) 22,894 66.4%
Localizer deviation (LOC) 7,121 20.7%

Fig. 5 Mean similarity values (± 1 SD) between unstable and stable patterns across four exceedance events.
Unstable patterns are ordinal patterns found in the stability check window (refer to Fig. 2) during the exceedance
of a flight variable related to instability (e.g., airspeed in Table 1). Stable patterns are those found during the
stability check window of flights that did not experience variable exceedances. The four exceedance events
analyzed are airspeed exceedance (CAS), glideslope deviation exceedance (GLS), vertical velocity exceedance
(IVV), and localizer deviation exceedance (LOC). Similarity was calculated using the similarity metric in Eq. (4).

of possible patterns is 4! = 24. The symbolic representation of these ordinal patterns using integers is given in Table 3.
For example, the normalized flight variables encoded in the pattern (1, 2, 3, 4), which is represented by the integer 1, are
ranked as follows: airspeed (1) ≤ glideslope deviation (2) ≤ vertical velocity (3) ≤ localizer deviation (4). With the
integer representations of 1 through 24 for the ordinal patterns, we can visualize the evolution of the modes during the
five minutes before landing in Fig. 6. Here, we observe differences in the modes starting at around the 4.5-minute mark
prior to landing. The differences in the modes are present until the 1-minute mark, were both stable and unstable flights
maintain the same ordinal patterns until landing. Given the arbitrary symbolic representation of the ordinal patterns, the
modes may be highly similar. For example, pattern (4, 3, 2, 1) could have been assigned the symbol 1 and (3, 4, 2, 1) the
symbol 24. This would have suggested a low similarity between the two patterns, despite only differing in the rank
of the first two variables. Therefore, we sought to quantify the actual similarity between modes to draw appropriate
observations. To make sense of the similarity values, note that given ordinal patterns with a length of 4, the spacing
between successive similarity values is 1/

(4
2
)
≈ 0.167. The evolution in stable and unstable mode similarity is shown in

Fig. 6(b), where we observe a similarity of approximately 0.83 between 3 and 4.5 minutes before landing. This value is
due to the change in the rank of vertical velocity (3) and localizer deviation (4) at around the 4.5-minute mark, where
the two variables swap ranks. The lowest similarity between modes is found at approximately 2 minutes before landing
for a brief 30-second window. This large drop in similarity is explained by airspeed (1) switching from a rank of 4 to a
rank of 1, a position shift of 3 that results in similarity of 0.5. More importantly, the similarity of the modes is 0.83 at
the start of stability check window and 1 at the end. This change is easily explained by the drop in rank, from 2 to 1, of
the normalized airspeed (CAS) signal as shown in Fig. 6(a).

The evolution of ordinal pattern mode similarity provided in Fig. 6(b), corroborated by the changes in ordinal
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patterns in Fig. 6(a), suggests a highly probable reason as to why the similarity values in Fig. 5 are not close to 0, as
we had hypothesized. This is because despite the presence of distinct modes in stable and unstable approaches, their
high similarity indicates that the modes are not that different, or dissimilar, from one another. Hence, they yield high
similarity values that strongly influence the distributions in Fig. 5 across all exceedance events. At the same time, these
results also suggest the existence of certain aircraft states (i.e., patterns) that drive down the similarity between the
stable and unstable modes at key moments prior to landing, especially at 2 minutes before landing. These states can
be exploited to predict unstable approaches. These observations drive our hypothesis for RQB that the presence of
both similar and dissimilar patterns (i.e., their distribution) can be used to predict the onset of an unstable approach.
However, before continuing with the discussion for RQB, we further illustrate the interpretability of ordinal patterns by
plotting an example of the dynamics of the normalized flight variables for a stable flight in Fig. 6(c). This figure depicts
what the ordinal pattern (1, 3, 4, 2), airspeed (1) ≤ vertical velocity (3) ≤ localizer deviation (4) ≤ glideslope deviation
(2), would look like during approach. A swap in the rank of two successive variables, say airspeed (1) and vertical
velocity (3), would result in a smaller drop in similarity compared to the scenario where airspeed (1) swaps ranks with
glideslope deviation (2). Over the same period of time, the latter scenario would suggest a more complex evolution of
the flight dynamics.

Table 3 Ordinal pattern symbolic representation as integer values. These symbols are used in Fig. 6. Inside
each pattern tuple, 1 stands for airspeed (CAS), 2 for glideslope deviation (GLS), 3 for vertical velocity (IVV),
and 4 for localizer deviation (LOC). All variables are normalized using Eq. (1). The rankings represent the order
of the variables.

Symbol Pattern Ranking Symbol Pattern Ranking
1 (1, 2, 3, 4) CAS ≤ GLS ≤ IVV ≤ LOC 13 (3, 1, 2, 4) IVV ≤ CAS ≤ GLS ≤ LOC
2 (1, 2, 4, 3) CAS ≤ GLS ≤ LOC ≤ IVV 14 (3, 1, 4, 2) IVV ≤ CAS ≤ LOC ≤ GLS
3 (1, 3, 2, 4) CAS ≤ IVV ≤ GLS ≤ LOC 15 (3, 2, 1, 4) IVV ≤ GLS ≤ CAS ≤ LOC
4 (1, 3, 4, 2) CAS ≤ IVV ≤ LOC ≤ GLS 16 (3, 2, 4, 1) IVV ≤ GLS ≤ LOC ≤ CAS
5 (1, 4, 2, 3) CAS ≤ LOC ≤ GLS ≤ IVV 17 (3, 4, 1, 2) IVV ≤ LOC ≤ CAS ≤ GLS
6 (1, 4, 3, 2) CAS ≤ LOC ≤ IVV ≤ GLS 18 (3, 4, 2, 1) IVV ≤ LOC ≤ GLS ≤ CAS
7 (2, 1, 3, 4) GLS ≤ CAS ≤ IVV ≤ LOC 19 (4, 1, 2, 3) LOC ≤ CAS ≤ GLS ≤ IVV
8 (2, 1, 4, 3) GLS ≤ CAS ≤ LOC ≤ IVV 20 (4, 1, 3, 2) LOC ≤ CAS ≤ IVV ≤ GLS
9 (2, 3, 1, 4) GLS ≤ IVV ≤ CAS ≤ LOC 21 (4, 2, 1, 3) LOC ≤ GLS ≤ CAS ≤ IVV
10 (2, 3, 4, 1) GLS ≤ IVV ≤ LOC ≤ CAS 22 (4, 2, 3, 1) LOC ≤ GLS ≤ IVV ≤ CAS
11 (2, 4, 1, 3) GLS ≤ LOC ≤ CAS ≤ IVV 23 (4, 3, 1, 2) LOC ≤ IVV ≤ CAS ≤ GLS
12 (2, 4, 3, 1) GLS ≤ LOC ≤ IVV ≤ CAS 24 (4, 3, 2, 1) LOC ≤ IVV ≤ GLS ≤ CAS

B. Building Predictive Models for Unstable Approaches
Predictive Modeling: Despite the lack of distinct ordinal patterns unique to unstable approaches, our hypothesis for

RQB is that we can leverage the distribution of ordinal patterns to predict an unstable approach ahead-of-time. This
requires the calculation of the patterns distributions at multiple time instances in the descent phase prior to the stability
check window (see Fig. 2). The time instances we selected were 4.5, 4, 3.5, 3, 2.5, 2, and 1.5 minutes before landing.
At each time instance, we derived the empirical distributions (i.e., probability mass functions (PMFs)) of the ordinal
patterns present in 8,700 stable and 8,700 unstable flights through the calculation of normalized histograms. More
specifically, each distribution represents the conditional probability of the aircraft’s stability, either stable or unstable,
given the observation of an ordinal pattern. The seven distributions we obtained are shown in Fig. 7. We refer to these
distributions as the conditional stability distributions or likelihoods (see Eq. (6)). Figure 7(a)–(g) track the evolution of
the conditional distributions throughout the span of 3 minutes. Despite the inclusion of the likelihood at 1.5 minutes
before landing, the further out the instability prediction is from 1.5 minutes, the longer pilots have to stabilize the aircraft.
At the 3-minute mark in Fig. 7(d), we begin seeing the emergence of more distinct distributions for stable flights, as the
probability mass from higher number patterns 22–24 starts to decrease. For example, closer to the 1.5-minute mark,
patterns 3 and 4 occur more frequently in stable flights than in unstable flights. This shift of mass towards lower number
patterns as we get closer to landing is not present in unstable flights, where instead we observe higher probabilities for
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(4, 3, 2, 1)

(3, 4, 2, 1)

(3, 4, 2, 1)

(3, 1, 4, 2)

(1, 3, 4, 2)

Stability check

(a) Mode comparison

Stability check

(b) Mode similarity

Transition to
pattern (1, 3, 4, 2)

Stability check

(c) Example of stable flight dynamics

Fig. 6 At each time step of the 5-minute time window prior to landing, we obtained the most occurring ordinal
pattern, the mode, across 2500 stable and 2500 unstable flights. The integer value assigned to each mode is
plotted at each time step in (a). In (b), Eq. (4) quantifies the similarity between the stable and unstable modes.
The decreased similarity at the 4- and 2-minute marks indicates a reordering of the flight variables. (c) Shows an
example of the dynamics of a stable flight, where a change in the ordinal pattern is visualized as a change in the
rank (i.e., the ordering) of the signals.

patterns 7–24 compared to stable flights. This suggests that the presence of higher number patterns between 2 and 1.5
minutes before landing may be a good indicator of instability. To learn more about the evolution of ordinal patterns,
we plotted the pattern distributions conditioned on the stability of the aircraft in Fig. 8. We refer to these PMFs as
conditional pattern distributions or posteriors. These posteriors highlight a shift in mass to patterns 3 and 4 near the
2.5-minute mark for stable flights. This shift compared to unstable flights is more evident at the 2- and 1.5-minute marks,
where patterns 3 and 4 are predominantly found in stable flights. Looking at Table 3, patterns 1 through 6 indicate that
normalized airspeed (CAS) has gone below all other signals. This observation is in agreement with aviation agency
recommendations that reducing and managing airspeed before the 1,000 ft and 500 ft altitude crossings can reduce the
probability of instability on approach.

Having calculated the likelihoods using thousands of training flights, for each test flight, we approximate the prior
over non-overlapping 30-second intervals starting at 5 minutes before landing. This prior is essentially a normalized
histogram of the ordinal patterns. At a sampling rate of 4 Hz, the prior is calculated using 120 samples. With the priors
and likelihoods at every prediction window (4.5, 4, 3.5, 3, 2.5, 2, and 1.5 minutes before landing), we can calculate the
probabilities 𝑃(𝑥 = stable) and 𝑃(𝑥 = unstable) and classify the stability flight over those 30-second’s worth of ordinal
patterns. The highest of the two probabilities determines the classification and, consequently, the prediction of the
aircraft’s stability.
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(a) 4.5 minutes prior to landing (b) 4 minutes prior to landing

(c) 3.5 minutes prior to landing (d) 3 minutes prior to landing

(e) 2.5 minutes prior to landing (f) 2 minutes prior to landing

(g) 1.5 minutes prior to landing

Fig. 7 Empirically derived probability mass functions (PMFs) of the stability of the aircraft, conditioned on the
ordinal patterns, at multiple time instances prior to landing. A total of 17,400 (8,700 stable and 8,700 unstable
flights) were used to create the PMFs. These likelihoods are used to make a prediction on the stability of a flight
using Bayes’ theorem at the following time instances: (a) 4.5, (b) 4, (c) 3.5, (d) 3, (e) 2.5, (f) 2, and (g) 1.5 minutes
before landing.
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(a) 4.5 minutes prior to landing (b) 4 minutes prior to landing

(c) 3.5 minutes prior to landing (d) 3 minutes prior to landing

(e) 2.5 minutes prior to landing (f) 2 minutes prior to landing

(g) 1.5 minutes prior to landing

Fig. 8 Empirically derived probability mass functions (PMFs) of the ordinal patterns, conditioned on the flight
stability, at multiple time instances prior to landing. A total of 17,400 (8,700 stable and 8,700 unstable flights)
were used to create the PMFs. These posteriors are calculated at the following time instances: (a) 4.5, (b) 4, (c)
3.5, (d) 3, (e) 2.5, (f) 2, and (g) 1.5 minutes before landing.
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Prediction Results: The classification results of using evidence probability comparisons (Eq. (6)) on 10,350 stable
and 10,350 unstable test flights are summarized in the normalized confusion matrices in Fig. 9 and performance metrics
in Table 4. The labels for each flight, stable (negative class) or unstable (positive class), were obtained using the
stabilization criteria in Table 1 during the stability check window. The predicted class over each 30-second interval acts
as a prediction of future instability. The results show a consistent classification performance improvements as we get
closer to the stability check window near the 1.5-minute mark, based on the median aircraft trajectory in Fig. 4. A
large drop in false positives can be observed between the 3.5- and 2.5-minute marks, Fig. 9(c) & (e). This increased
performance is potentially due to the lower occurrence of high-integer ordinal (> 6) in stable flights, as depicted when
comparing Fig. 7(c) & (e). This results in a lower number of stable flights being classified as unstable that benefits
accuracy and precision, which both see an increase of 0.07 going from 3.5 to 2.5 minutes. These improvements in
classification performance allow us to associate certain patterns in Fig. 7 with the stability of the aircraft. In particular,
we highlight the overwhelming frequency of patterns 3 and 4 in stable flights compared unstable flights. Using Table 3,
we can directly map these patterns to the rankings of CAS ≤ IVV ≤ GLS ≤ LOC for pattern 3 and CAS ≤ IVV ≤ LOC
≤ GLS for pattern 4. This suggests that when normalized airspeed (CAS) and vertical velocity (IVV) are the first two
variables in an ordinal pattern, the aircraft is more likely to be in a stable state. Therefore, it is important to carefully
manage these two energy variables on approach.

The classification improvements as we get closer to landing are only interrupted at the 2-minute mark as shown in
Fig. 9(f) and Table 4. This drop in performance is characterized by an increase in falsely identified unstable approaches
(false positives) and decrease in correctly identified stable approaches (true negatives). To explain the misclassification
of stable flights, we draw observations from the likelihoods in Fig. 7(f). This figure shows a drop in the probability
mass 𝑃(𝑥 = stable | 𝜋 𝑗 ) for higher number ordinal patterns such as 𝜋7 = 7 through 𝜋24 = 24. Despite the shift of mass
towards lower number ordinal patterns, lingering mass in the higher ordinal patterns may be a likely cause of the drop
in classification performance at the 2-minute mark, resulting in the nearly 50/50 split in the class prediction of stable
flights. Intuitively, this performance drop may be attributed to last minute aircraft corrections performed by pilots
and automated systems to stabilize the aircraft, leading to unstable approaches that appear to be stable. Despite these
results, the decrease in false negatives and increase in true positives at the same 2-minute mark greatly improves the
classification of unstable flights, as evidenced by a recall value of 0.86. Arguably, the correct prediction of unstable
approaches is more important than the prediction of stable approaches. Moreover, the classification results at 1.5 minutes
before landing show that even if the goal is to solely detect instability in-time, our simple approach manages an accuracy
of 0.80, precision of 0.77, and recall of 0.86. Importantly, the predictions maintain the interpretability of the ordinal
patterns, as the pilots can assess the flight variable rankings that make up the patterns and attempt to bring the aircraft to
a stable configuration, such as pattern 3 or 4.

Table 4 Classification performance metrics of using Bayes’ theorem on a 2-class problem: stable or unstable
flight. The metrics are calculated at non-overlapping 30-second time windows prior to landing. The time window
labels aid in the comparison with Fig. 7, 8, & 9.

Time (min) Window Label Accuracy Precision Recall
4.5 a 0.59 0.58 0.65
4.0 b 0.59 0.58 0.61
3.5 c 0.62 0.61 0.67
3.0 d 0.66 0.65 0.69
2.5 e 0.69 0.68 0.73
2.0 f 0.70 0.65 0.86
1.5 g 0.80 0.77 0.86

IV. Conclusion
Despite recent advances in anomaly detection and precursor identification methods designed to improve aviation

safety, many of them are hindered by poor end-user interpretability. This is especially evident in deep learning where
the designer may be able to interpret the model to some extent, but this interpretability does not end up translating
to the end-user (e.g., pilots, air traffic control). As patterns of failure become more complex due to the rise in
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(a) 4.5 minutes prior to landing (b) 4 minutes prior to landing (c) 3.5 minutes prior to landing

(d) 3 minutes prior to landing (e) 2.5 minutes prior to landing (f) 2 minutes prior to landing

(g) 1.5 minutes prior to landing

Fig. 9 Flight stability classification results at (a) 4.5, (b) 4, (c) 3.5, (d) 3, (e) 2.5, (f) 2, and (g) 1.5 minutes before
landing. The true class labels were obtained from the classification of the flight’s stability during the stability
check window that occurs at approximately 96 seconds prior to landing. The normalized confusion matrices
summarize the class prediction performance (in percentage) on 20,700 test flights (10,350 stable and 10,350
unstable).

system complexity, more robust and interpretable risk detection paradigms will need to be designed. The shift away
from univariate exceedance detection methods highlights the important trade-off between interpretability and model
complexity. Although this shift is necessary to continue improving aviation safety, new algorithms that can generalize to
future aircraft still need to maintain a high degree of model interpretability. In this study, we provide a straightforward
and highly interpretable multivariate analysis of flight dynamics linked to approach instability. We present the viability
of using ordinal patterns to capture the underlying state of the aircraft and simple Bayesian predictive modeling to detect
future instability. This allowed us to associate certain patterns with the stability state of the aircraft in a probabilistic
sense. This level of feature association can be more complicated and unintuitive when using complex machine learning
and deep learning models. Future work will focus on improving classification performance by continuing to use Bayesian
analysis or exploring other probabilistic frameworks, such as the fusion framework in [32] and fusion frameworks
for time series [33–35]. A formulation of adverse event detection in a sensor fusion framework will allow us to fuse
multimodal information of the flight dynamics, air traffic services, and the pilots’ physical [36–38] and cognitive
state [37, 39, 40]. This enables us to better capture the root cause of an anomaly, improve training, and understand the
environmental changes imposed on the human. Thus, this stresses the importance of the development of interpretable
ML models where we can take insights from other research human-focused areas that can inform us on environmental
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conditions and training applications [32, 41–43]. Moreover, future studies built on the foundational work in this paper
will extend our analysis into multi-class anomaly detection, while maintaining the interpretability and generalizability
required by the future national airspace.
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