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A B S T R A C T

In the area of human performance and cognitive research, machine learning (ML) problems become increas-
ingly complex due to limitations in the experimental design, resulting in the development of poor predictive
models. More specifically, experimental study designs produce very few data instances, have large class
imbalances and conflicting ground truth labels, and generate wide data sets due to the diverse amount of
sensors. From an ML perspective these problems are further exacerbated in anomaly detection cases where
class imbalances occur and there are almost always more features than samples. Typically, dimensionality
reduction methods (e.g., PCA, autoencoders) are utilized to handle these issues from wide data sets. However,
these dimensionality reduction methods do not always map to a lower dimensional space appropriately, and
they capture noise or irrelevant information. In addition, when new sensor modalities are incorporated, the
entire ML paradigm has to be remodeled because of new dependencies introduced by the new information.
Remodeling these ML paradigms is time-consuming and costly due to lack of modularity in the paradigm
design, which is not ideal. Furthermore, human performance research experiments, at times, creates ambiguous
class labels because the ground truth data cannot be agreed upon by subject-matter experts annotations, making
ML paradigm nearly impossible to model.

This work pulls insights from Dempster–Shafer theory (DST), stacking of ML models, and bagging to
address uncertainty and ignorance for multi-classification ML problems caused by ambiguous ground truth, low
samples, subject-to-subject variability, class imbalances, and wide data sets. Based on these insights, we propose
a probabilistic model fusion approach, Naive Adaptive Probabilistic Sensor (NAPS), which combines ML
paradigms built around bagging algorithms to overcome these experimental data concerns while maintaining a
modular design for future sensor (new feature integration) and conflicting ground truth data. We demonstrate
significant overall performance improvements using NAPS (an accuracy of 95.29%) in detecting human task
errors (a four class problem) caused by impaired cognitive states and a negligible drop in performance with
the case of ambiguous ground truth labels (an accuracy of 93.93%), when compared to other methodologies
(an accuracy of 64.91%). This work potentially sets the foundation for other human-centric modeling systems
that rely on human state prediction modeling.
. Introduction

Human–computer interaction research on engineering models of
uman behavior (i.e., predictive human performance modeling and hu-
an cognitive modeling) enable developing enhanced human–machine

nterfaces, such as biomedical informatics at the bedside in health care
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settings or human and autonomous systems teaming in aeronautics
contexts. A challenge when designing these systems is understanding
the state of human operators and their task performance. This under-
standing can be derived from measures of physiological states, human
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emotions, cognitive states, and errors in performance. The ability to un-
derstand the human from the perspective of the system they are linked
to can aid task-related activities (e.g., in semi-autonomous vehicles) or
provide the required decision support for the system (e.g., intelligent
health care systems). In order for a machine to directly adjust and
assist the human, we must be able to predict the changes within the
human for the machine to intervene and provide decision support.
This research proposes a new technology, Naive Adaptive Probabilistic
Sensor (NAPS) fusion, to predict cognitive and performance errors using
a predictive machine learning (ML) fusion approach that quantifies
uncertainty and accounts for ignorance within the model and between
ML models.

Prior Work. Under the umbrella of human performance and cog-
nitive predictive research, feasible approaches are needed for highly
granular, longitudinal studies to evaluate people in open environments
performing everyday tasks. Thus, real-time monitoring of multi-modal
psychophysiological, movement and behavioral data is necessary to
capture subtle changes in detecting human activities, human states,
cognitive states, and other related human states [1–5]. Although analy-
sis of single modality data can predict a specific human state (e.g., cog-
nitive state, psychological state) using traditional statistical methods [6,
7], this approach is insufficient for multi-class detection problems and
overall lacks the necessary dimensionality to predict multiple classes [8,
9]. More specifically, this approach is limited because different phys-
iological and behavioral changes are necessary to detect patterns of
various combinations of physiological subsystems [9,10], such as elec-
trocardiograms (ECG) combined with electroencephalogram (EEG) to
incorporate the cardiac and neurological systems together. This single
modality concept of detecting a human’s state would be analogous of
trying to triangulate someone’s GPS locations using only one satellite.
Multiple satellites (i.e., sensors) are required to obtain the person’s X,
Y, and Z coordinates to obtain their position in space. Why would pre-
dicting a human’s performance, a more complex analytical problem, be
anything less? In real open-world environments, human performance
is multidimensional, requiring insight from numerous physiological
subsystems, where each subsystem provides additional discriminants
independent of other systems about the state of the human.

Challenges. For human–machine interaction, large amounts of an-
notated data are required in order to properly capture the variance
of multiple cognitive changes, human state changes, and subject vari-
ability for accurate classification. However, sometimes large-scale data
collection on humans is just not possible due to cost, access to a specific
population (e.g., rare diseases, a subject’s experience level), and time.
For example, within the aerospace domain and human performance
monitoring, we require: (1) a specialized median to recruit trained
pilots for the study; (2) potentially one or multiple full days of data
collection for a single human subject’s data, (3) potentially multiple
medical doctors, technicians, and researchers to oversee the study to
maintain data quality and ensure the subjects’ safety; (4) flight simula-
tion or real flight time allocation. Collecting a single subject’s data can
easily cost thousands to tens of thousands of dollars. Thus, building
a comprehensive data set for predicting human performance can be
severely constrained, which creates complex ML problems that require
numerous modalities of streaming sensors (e.g., electrocardiogram,
electroencephalogram, etc.) in order to capture systemic psychophys-
iological changes [10]. These problems are further exacerbated since
the quantity of tasks performed in an experiment is also limited by
the number of ‘‘dependent’’ samples a single subject can produce,
producing an anomaly detection ML problem (e.g., rare outcomes to
performance tasks). This is where class imbalances are introduced into
the ML data set, and there are more features collected than there are
samples, which is commonly referred to as a wide data set. These
sensors can create hundreds of features (predictive variables) that
often outnumber the number of tasks performed (response variables)
16

in an experiment. The more modalities used to gain knowledge about T
underlying cognitive states, the more features we obtain, but task-
related sample sizes can still limit the usable information. Furthermore,
in some cognitive experimental designs, subject-matter experts tend
to disagree with data annotations, causing ambiguity for the ground
truth annotated data sets [11]. All of these design problems caused by
uncertainty are challenging to address due to a lack of training data in-
stances, class imbalances, wide data sets, subject-to-subject variability,
and the inability to modularly scale to new sensors from previous ML
paradigms. Collectively, these issues place uncertainty on the optimal
decision boundary for the ML model and limit its predictive power.

Insights. Dempster–Shafer theory (DST) is a framework equipped to
deal with little to no prior knowledge, ignorance, and uncertainty [12,
13]. DST was developed for its ability to handle imperfect data in
an effective and more intuitive manner [14]. DST has three major
caveats when compared to probability theory but can still be con-
sidered a generalization of probability [15]. The first main caveat
between the two methods is that Bayesian approaches assume that
the distribution, otherwise known as probability mass function (p.m.f),
is fully defined. Therefore, Bayesian approaches conform strictly to
axioms of probability [16,17]. DST relaxes the axiom of additivity
by stating that if evidence is not provided or there is conflict, the
‘‘support’’ is assigned to the full set of propositions as uncertainty. Thus,
DST handles and quantifies uncertainty for distributions that are not
fully defined due to incomplete information. The second caveat is that
probability theory only assigns probabilities to ‘‘singletons’’ (e.g., with
sample space {𝑋, 𝑌 ,𝑍}, {𝑋}, {𝑌 }, {𝑍}). In order to determine prob-
bilities associated with other propositions, we examine the union of
he probabilities. DST, on the other hand, allows ‘‘supports’’ to be
ssigned to the complete power set of possibilities, meaning you can set
upport to various combinations within the set (i.e., doubleton, {𝑋, 𝑌 }).
hus, DST allows us to model ignorance by how we set ‘‘supports’’ to
ropositions because we are uncertain of which singleton proposition to
upport. Thirdly, DST approaches are conveniently designed to combine
odies of Evidence (BoE) through fusion paradigms such as Dempster’s
ombination Rule (DCR) [18,19]. These BoE act as independent sources
f information (i.e., a sensor model) but are combined to update the set
f ‘‘supports’’ for the propositions and uncertainty.

Although our approach does not need to be restricted to apply-
ng DST, the core concepts of implementing similar frameworks can
otentially address the challenges previously discussed. Despite DST’s
esigned to handle uncertainty, the three major parts of the framework
hat can potentially overcome these challenges are: (1) the concept of
ombining independent sources of information (i.e., combining multi-
le models) (2) the concept of setting support to various combinations
f the proposition (i.e., augmenting the response variable).

First, this concept of fusing information from multiple BoE together
llows us to combine multiple subspaces of information in order to cap-
ure the full feature space of the data. This can be achieved by making
single BoE represent a sensor or a small subset of features within the
ector space. We can simply build numerous small models associated
ith a sensor or subset of sensors that are then fused together to expand

o a larger feature space. Thus, smaller models have fewer parameters
o approximate and fit against, allowing us to reduce our uncertainty
ithin the model’s decision boundary. When these smaller ML models
re fused together around a DS Framework (e.g., a framework that can
andle uncertainty), we can then overcome these constraints caused
y high dimensionality and small sample sizes by indirectly loosing
hese constraints that are directly placed on classical ML modeling
pproaches. This is the foundation and paramount concept for this
roposed framework and enables us to avoid the application of di-
ensionality reductions to our data. These dimensionality reductions
ethods potentially fail to capture relevant information caused by the

ow amount of samples and class imbalances in the data, where all the
ata is projected in a generalized fashion. This approach adapts and
eights each sample independently depending on the ML model’s fit.

his ability to adapt to each sample and the utility of fusing smaller ML
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models together also allows the addition of other BoE (i.e., a new sensor
modality) to be included in the detection paradigm in later iterative
designs for increased modularity.

Secondly, the concept of the framework allows the bodies of ev-
idence (BoE) to avoid being constrained to specifically support any
single hypothesis (i.e., fuzzy classification). In real-world cognitive
performance problems, subject-matter experts do not always agree on
the same cognitive state label. This disagreement of the class label may
be attributed to the poor inter-rater reliability, a mixture of cognitive
states, or a transition to a new cognitive state. Our framework allows
the paradigm to give support to a label that contains multiple classes
as a single proposition (i.e., a doubleton, {𝑋, 𝑌 }). This allows us to
account for ignorance within the data. These labels with multiple
classes essentially merge both response variables together and their
data. Thus, the most important takeaway is that we can increase sample
size and simplify the model’s classification when we merge a response
variable together.

To explain NAPS Fusion in detail, the rest of this paper is broken
down as follows. In Section 2, we go over the human experimental
study design which generated the data for the framework training and
validation. This is followed by Section 3 in which we begin constructing
the data structures required by the framework. In this section, we also
discuss the physiological features extracted from the cognitive study
and rely on them to help explain the framework’s data structures.
Section 4 introduces the more rigorous Dempster–Shafer concepts to
elucidate the remaining components of the framework. A lengthy exam-
ple on mass assignment is given in Section 5 to finalize our explanation
of NAPS Fusion. Finally, Section 6 provides our results and discussion.

Contributions. In the aforementioned sections, we develop a new
sensor fusion framework named NAPS Fusion to overcome predictive
modeling limited limitations due to deficient experimental data. The
framework was validated on a multiclass experiment on cognitive
state impairment to demonstrate its ability to handle data with class
imbalances, ambiguous labels, and few samples. The development of
the NAPS Fusion paradigm showed a significant improvement in clas-
sification performance compared to other baseline machine learning
methods, including deep learning.

2. Experimental design and physiological features

The primary goal of the study was to verify and validate the
cognitive capacity of human subjects undergoing normobaric hypoxia
induction. Symptoms of hypoxia are shown to cause cognitive impair-
ment that can lead to lapses of attention, loss of situational awareness
in operational contexts, temporary mental deficits, and even complete
incapacitation, all of which threaten safety of flight. The potentially
disastrous consequences of hypoxia in aviation underscore the need for
a robust and flexible Human–Machine interaction framework to help
understand and prevent negative aviation outcomes [20,21]. Thus, this
work provides a strong ML design case for predicting task performance
errors caused by cognitive impairments during normal and hypoxic
conditions.

Data were collected by a research team at NASA LaRC who sub-
jected 56 volunteers with current hypoxia training certificates to nor-
mobaric hypoxia to study the impact on aircraft pilot performance. The
data set was later reduced down to 49 subjects due to experimental
obstacles and data attrition. Subjects completed informed consent doc-
umentation and then were briefed on the operation of the Environics,
Inc. Reduced Oxygen Breathing Device (ROBD-2) and connected to
physiological recording equipment. In the study, pilots were adminis-
tered the Multi-Attribute Task Battery (MATB) task, a computer-based
cognitive task designed to evaluate operator performance and work-
load that mimic typical flight tasks. The subjects completed training
sessions for the experimental MATB task and sat quietly breathing room
air while wearing masks to establish a physiological baseline, shown
in Fig. 1. Subjects performed the MATB task three times under the
17
following conditions: (1) breathing room air while wearing a mask;
(2) breathing sea level gas mixture through a mask; and (3) breathing
15,000 ft gas mixture through a mask. Between MATB sessions, they re-
covered from hypoxia exposure by breathing 100% O2 for two minutes
following 15,000 ft exposure, and room air was provided for the other
sessions. The subjects completed a self-reported workload measure
(NASA-Task Load Index, NASA-TLX) after each trial. After completing
all trials, subjects were debriefed regarding the study purpose. Data
from the NASA study was used to investigate the relationship between
pilot physiology and performance under both hypoxic and non-hypoxic
conditions. Subjects in the study experienced simulated altitudes of sea
level (21% O2) and 15,000 ft (11.2% O2) induced by the ROBD-2.

During all trials, multiple bio-sensors collected pilot physiological
responses, including electrocardiogram (ECG), electroencephalogram
(EEG), electrical dermal activity (EDA), oxygen concentration (O2),
oxygen saturation (O2Sat), photoplethysmogram (PPG), and respira-
tion. Since hypoxia has been found to cause cognitive and psychomotor
deficits [22,23], we expected induced hypoxia to affect a pilot’s abil-
ity to perform these tasks. Machine learning and Cognitive modeling
designed around the MATB performance can be utilized to capture
the behavioral impacts of changes in workload, operator stress level,
or fatigue levels caused by hypoxia and characterizes the high-level
strategies engaged during continuous multitasking [21,24,25].

2.1. Multi-attribute Task Battery (MATB)

The Multi-Attribute Task Battery (MATB) was used to provide im-
portant insight into the applied effects of performance. MATB was
developed in 1990 as a test designed to evaluate operator performance
and workload via a set of aviation-related tasks [26]. Tasks consist
of monitoring, tracking, communication, and resource management,
as demonstrated in Fig. 2. The three tasks imposed on pilots using
the MATB were tracking, resource management, and communications.
The tracking is located in the upper-middle window and requires the
test subject to keep the circular target in the center of the window
using a joystick. This task is a compensatory task, thus increased
reaction time resulting from a hypoxic state could affect a subject’s
ability to compensate or cause them to overcompensate. Resource
management requires subjects to maintain fuel tanks at a level of 2500
units each, which can be achieved by transferring fuel from tank to
tank. However, since hypoxia can cause impaired mental arithmetic
and decision-making skills, maintaining appropriate fuel levels may
be difficult under hypoxic conditions. The subject must also listen for
audio messages addressed to their communications call-sign, which
is displayed at the top of the communications window, and ignore
messages directed at other call-signs. The audio message directs the
subjects to change the frequency of one of the radios listed on the
screen, but because hypoxia can negatively impact the subject’s ability
to learn and memorize their call-sign as well as their ability to pay
attention to the audio signal, performance on this task may decrease
with the onset of a hypoxic state.

2.2. Physiological and MATB data

The MATB performance variables are updated and reported every
10 s, and oxygen saturation is sampled at 256 Hz. Therefore, our
design focused on a window size with a minimum of 10 s and a
maximum of 60 s. This multi-resolution windowing approach was
designed because of the multi-modal physiological time series data
(e.g., ECG, EEG). Specifically, these physiological signals were captured
using different windows of time since not all physiological features can
provide precise information within such a narrow window (e.g., Heart
Rate Complexity Measurements [27]). Thus, not all the time-series data
can be placed on a single time-scaled window. Importantly, this multi-
resolution approach acquires features that provide both longitudinal
trend information on the autonomic system (i.e., longer time windows)
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Fig. 1. Environics ROBD2 system designed for inducing hypoxia, without changing atmospheric pressure.
Fig. 2. Illustration of the Multi-Attribute Task Battery (MATB) displayed on the screen of the participant.
and instantaneous features of the autonomic system and cognitive
states (i.e., shorter time windows). Intensity analysis was performed,
and activation complexity was calculated for EEG waveforms using
specialized wavelet filters and complexity measures described in [23].

3. Data structures and augmented ML modeling foundations for
fusion

The proposed fusion framework, Naive Adaptive Probabilistic Sen-
sor (NAPS), utilizes numerous small models that have numerous aug-
mented response variables that randomly span the full feature space
of our data set, shown in Fig. 4. In this section, we define how to
develop the data structure and response variable framework for the
proposed fusion framework, which is highlighted in Fig. 4 under the
subcomponents of Augmented Responses and ML model.

3.1. Defining the full data set

Utilizing Table 1, a breakdown of the full data in which their
modalities and extracted features are denoted as D . Matrix D has a
18

S S
Table 1
Feature types per sensing modality.

Mod𝑔 Modality Feature type Number of features

Mod1 ECG Summary Stats 2
HR complexity 2

Mod2 Respiration
Rate 1
Complexity 2
Interactions 7

Mod3 02 Saturation Mean 1
Interactions 7

Mod4 Demographics Anatomical 2
Flight Info. 2

Mod(5−20) EEG Power spectrum 15 × 16 CHL
Engagement index 1 × 16 CHL
PE complexity 1 × 16 CHL

Total 298

size of (𝑁 ×𝐻), where the sample of the MATB performance instance is
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∀ 𝑛 ∈ {1, 2,… , 𝑁} and the physiological features (e.g., heart rate (HR)
complexity) are ∀ ℎ ∈ {1, 2,… ,𝐻}. The structure of DS is composed
f 𝐺 = 20 modalities (e.g., ECG, respiration, etc.), where each EEG
hannels is considered its own modality. We will denote these specific
odalities as Mod𝑔 , where ∀ 𝑔 ∈ {1, 2,… , 𝐺}. The entire data set is
efined around Table 1, taking the form

S = [

𝐿1 = 4
⏞⏞⏞
Mod𝟏

𝐿2 = 10
⏞⏞⏞
Mod𝟐 …

𝐿20 = 17
⏞⏞⏞⏞⏞
Mod𝟐𝟎 𝐑 ]

S =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓1(1−4) 𝑓1(5−14) … 𝑓1(244−𝐻) 𝑅1
𝑓2(1−4) 𝑓2(5−14) ⋮ 𝑓2(244−𝐻) 𝑅2

⋮ ⋱ ⋱ … ⋮
𝑓𝑁(1−4) 𝑓𝑁(5−14) … 𝑓𝑁(244−𝐻) 𝑅𝑁

⎤

⎥

⎥

⎥

⎥

⎦

, (1)

here 𝑅𝑛 is the response variable for the 𝑛th sample, 𝑓𝑛ℎ is the features
hat are associated to a specific Mod𝑔 , and 𝐿𝑔 is the total number of
eatures which are contained within the Mod𝑔 .

.2. Novel predictive variable data structures requirements

The entire data set, DS, is strategically sampled for the development
f various small independent models that have overlapping sets of
eatures from DS. We will refer to each one of these models as a ‘‘sensor
odel’’, 𝑆𝑚, which is linked to an organized sub-set of the feature

paces, 𝐷𝑚. We define this data matrix as,

𝑚 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓11 𝑓12 … 𝑓1𝐾
𝑓21 𝑓22 ⋮ 𝑓2𝐾
⋮ ⋮ ⋱ ⋮

𝑓𝑁1 𝑓𝑁2 … 𝑓𝑁𝐾

⎤

⎥

⎥

⎥

⎥

⎦

, (2)

here 𝑓𝑛𝑘 is a feature, ∀ 𝑛 ∈ {1, 2,… , 𝑁} describing the number of
amples, ∀ 𝑘 ∈ {1, 2,… , 𝐾} is the number of features with 𝑆𝑚, and
≪ 𝐻 . A plethora of 𝐷𝑚’s are created for a total of 𝑀 sensor models

n which the data structure, 𝐷𝑚, is restructured as a deep copy data
tructure,

𝐶 = [𝐷1, 𝐷2,… , 𝐷𝑀−1, 𝐷𝑀 ], (3)

here D𝐶 contains 𝑀 data structures associated with their respective
sensor models.

.2.1. Structuring of a sensor model
The structuring of 𝑆𝑚 depends on the number of samples within

he data set, the number of response variables (e.g., binary vs. multi-
lass), and the total number of features within DS. These factors all play
role in determining the number of features, 𝐾, utilized in creating
𝑚. The 𝐾 features used within a ‘‘sensor model’’ aims to maintain an
dequate ratio of observations to estimated parameters. Over the years,
here have been numerous ‘‘rules of thumb’’ which discuss minimum
atios necessary for binomial distributions, regressions, etc., which have
anged from ratios of 20:1 (observations to one estimated parameter) to
atios of 5:1 [28–31]. Once a 𝐾 is determined, we do not completely
elect any random vectors within DS’s feature space as a predictive
ariable. We design a quasi-random structure based on the specific
odalities, Mod𝑔 , previously defined. Every ‘‘sensor model’’ from a
hysiological point of view requires multiple diverse physiological
odalities to triangulate a human’s state, and each modality has nu-
erous inputs. Therefore, we want to guarantee that each model will

lways incorporate a diverse set of specific modalities with structured
elationships consisting of randomized features (e.g., eight random EEG
19

eatures from eight different channels).
.2.2. Our study sensor model paradigm
Within this study, 𝑀 sensor models (i.e., feature set), {𝑆𝑚|𝑚 =

,… ,𝑀}, were created from the full vector space, where 11 features
ere randomly chosen to be placed within the model’s correspond-

ng quasi-random structure 𝐷𝑚. These 11 features for each sensor
odel had a quasi-random structure by choosing two random EEG

hannels (e.g., P2, F1), where within each EEG channel, we produced
7 features. However, only 4 EEG features are randomly taken from
ach of the two random EEG channels. The first part of the quasi-
andom structure produces a total of 8 EEG random features that are
pecific to the two random EEG channels that were chosen. The second
art of the quasi-random structure chooses three additional random
eatures where one random feature comes from the ECG modality (4
ossible features), and two random features come from Respiration,
2 Saturation, or Demographics modalities (22 possible features). This
uasi-random structure of feature inputs produces a total of 11 features
or each 𝑆𝑚. From the set of 𝐷𝑚’s, we produced a total of 𝑀 = 175

sensor models 𝑆𝑚. Thus, there is obvious overlap within the feature
space between various sensors. Reducing the number of features per
model will now allow us to avoid model sparsity problems (issues
of uncertainty) caused by the ratio of the number of features to the
number of observations.

Utilizing the MATB, the response variables are formed based on the
performance of their tracking and communications tasks. This devel-
oped a 4-class classification dataset for the for proposed algorithms
training and testing. These response variables are considered a sin-
gleton proposition (discussed later in the Dempster–Shafer framework
section). These propositions are no-error (𝜃1, 𝑁 = 663 samples), delay
in communication task (𝜃2, 𝑁 = 147 samples), tracking deviation error
(𝜃3, 𝑁 = 144 samples), and radio error (𝜃4, 𝑁 = 45 samples).

Our study data produced a total of 958 observations of when the
ilots were supposed to engage to perform a functional task. The model
imension of 11 features (analogous to the number of parameters we
eed to estimate) utilizing the 958 observations produces an approx-
mate ratio of 87:1. We extend the ratio rule of thumb because our
esponse variable is not binary, and we are handling a class balance
roblem, in which down-sampling can potentially occur during the
odeling process.

.3. Augmented response variable combinations and mapping

The framework leverages DS theory’s foundation of examining the
ull set of mutually exclusive and exhaustive propositions (e.g., class
abels) of interest, which is referred to as the frame of discernment
(FOD). Thus, for our specific case, the FOD 𝛺 is defined with the four
propositions,

𝛺 = {𝜃1, 𝜃2, 𝜃3, 𝜃4}, (4)

based on our four class ML Detection problem. Thus, the FOD is a set of
all subsets of 𝛺, which creates the power set 2𝛺. Therefore, the power
set consists of the combinatorial sets or propositions that make up 𝛺.
These combinatorial sets allow us to model ignorance related to the
ML class label, where the ML model can be trained around various
augmented response variables consisting of

2|𝛺|  ←←←←←←←←←←←←←→{∅, {𝜃1}, {𝜃2}, {𝜃3}, {𝜃4}, {𝜃1, 𝜃2},

{𝜃3, 𝜃4}, {𝜃2, 𝜃3}, {𝜃1, 𝜃4}, {𝜃1, 𝜃3}

{𝜃2, 𝜃4}, {𝜃1, 𝜃2, 𝜃3}, {𝜃2, 𝜃3, 𝜃4},

{𝜃1, 𝜃3, 𝜃4}, {𝜃1, 𝜃2, 𝜃4}, 𝛺}

(5)

combinations of the response variable. The power set in Eq. (5) demon-
strates there are 16 different propositions that can be created. These
propositions can be augmented and mixed to produce different map-
pings of ML models from its associated response variables. Based on
the power set in Eq. (5), Table 2 formulates these DST propositions
into various augmented response variables, where each combination
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Table 2
Augmented response variables using four classes.

Combination variations Class/Proposition assignments Number of classes

𝑋1 {𝜃1} {𝜃2} {𝜃3} {𝜃4} 4
𝑋2 {𝜃1} {𝜃2 , 𝜃3 , 𝜃4} 2
𝑋3 {𝜃2} {𝜃1 , 𝜃3 , 𝜃4} 2
𝑋4 {𝜃3} {𝜃1 , 𝜃2 , 𝜃4} 2
𝑋5 {𝜃4} {𝜃2 , 𝜃3 , 𝜃4} 2
𝑋6 {𝜃1 , 𝜃2} {𝜃3 , 𝜃4} 2
𝑋7 {𝜃1 , 𝜃3} {𝜃2 , 𝜃4} 2
𝑋8 {𝜃1 , 𝜃4} {𝜃2 , 𝜃3} 2
𝑋9 {𝜃1 , 𝜃2} {𝜃3} {𝜃4} 3
𝑋10 {𝜃1 , 𝜃3} {𝜃2} {𝜃4} 3
𝑋11 {𝜃1 , 𝜃4} {𝜃2} {𝜃3} 3
𝑋12 {𝜃2 , 𝜃3} {𝜃1} {𝜃4} 3
𝑋13 {𝜃2 , 𝜃4} {𝜃1} {𝜃3} 3
𝑋14 {𝜃3 , 𝜃4} {𝜃1} {𝜃2} 3

variation with the table 𝑋𝑝 can be a different mapping of the original
ecorded response variable, where ∀ 𝑝 ∈ {1, 2,… , 𝑃 }. Therefore, let us

consider a single 𝐷𝑚 containing 𝑁 samples of data. A single sample of
data, 𝑛, can be expressed as

𝐷𝑚(𝑛) = [𝑓𝑛1, 𝑓𝑛2, … , 𝑓𝑛𝐾 ]
𝑆𝑚

 ←←←←←←←←←←←←←←←←←←←←←→ 𝑅𝑛, (6)

here 𝑅𝑛 is the recorded and potentially uncertain response variable.
he initial 𝑅𝑛’s recorded response variable is strictly composed of
ingleton propositions where the |𝛺| equals 𝐶 labeled classes, yielding
𝜃1}, {𝜃2},… , {𝜃𝐶} singletons. This produces 2𝐶−2 potential augmented
esponse variables, where 2𝐶 = 𝑃 for the full set of potential combina-
ions. Given a four class problem, we provide a breakdown of these
otential combinations in Table 2, where 𝛺 and the ∅ elements are
xcluded within the power set. Each 𝑋𝑝 consists of a {⋅}+ proposition
hat is considered the positive class label for the model, where

⋅}+ = 𝑅𝑛 ∩𝑋𝑝. (7)

herefore, we can map a sampled response variable 𝑅𝑛 as the positive
lass label for a defined sample of 𝑅𝑛 = {⋅}+, which is mapped to a new
esponse variable through the following condition

𝑆𝑚(𝐷𝑚(𝑛))
𝑅𝑛
 ←←←←←←←←←←←←←→ 𝑋𝑝

def
=

{

{⋅}+, {P}𝑐
}

⟩

def
= 𝐷𝑝𝑚(𝑛), (8)

here {P}𝑐 is a proposition or a set of propositions that is the compli-
ent of {⋅} within the FOD, and 𝐷𝑚 is extended to a second dimension
efining the same predictive variables but are mapped to a different
esponse variable 𝐷𝑝𝑚. For an example, let us assume the sampled
esponse variable 𝑅𝑛 = {𝜃1}+ which will be mapped to the doubleton
ases of 𝑋6, 𝑋7, and 𝑋8, shown in Table 2. This mapping to new
esponse variables will produce the following:

6𝑚(𝑛)
def
=

⟨

𝑆𝑚(𝐷𝑚(𝑛))
𝑅𝑛
 ←←←←←←←←←←←←←→ 𝑋6

⟩

, (9)

where 𝑋6
def
=

{

{𝜃1, 𝜃2}+, {𝜃3, 𝜃4}
}

7𝑚(𝑛)
def
=

⟨

𝑆𝑚(𝐷𝑚(𝑛))
𝑅𝑛
 ←←←←←←←←←←←←←→ 𝑋7

⟩

,

where 𝑋7
def
=

{

{𝜃1, 𝜃3}+, {𝜃2, 𝜃4}
}

𝐷8𝑚(𝑛)
def
=

⟨

𝑆𝑚(𝐷𝑚(𝑛))
𝑅𝑛
 ←←←←←←←←←←←←←→ 𝑋8

⟩

,

where 𝑋8
def
=

{

{𝜃1, 𝜃4}+, {𝜃2, 𝜃3}
}

.

These new data sets, 𝐷𝑝𝑚, create new simplistic classification bound-
aries to be relaxed or simply neglected when the response variables
are merged together. These new response variables are inputs into the
20

sensor model, 𝑆𝑚. However, these augmented response variables and t
heir respective predictive variables create a new ML Model, M𝑝𝑚. This
eads to a new BoE for the fusion framework to account for based on
𝑝𝑚 individual models. The complete set of models are created by 𝑀

eature sets (or sensor models, where 𝑀 = 175) and 𝑃 combinations of
he response variables (or augment responses, where 𝑃 ), mirroring the
ew data set 𝐷𝑝𝑚. This produces 𝑃 × 𝑀 individual models. The variety
f these models can therefore be expressed as a matrix of randomly
tructured models defined as
⎡

⎢

⎢

⎢

⎢

⎣

M11 M12 … M1𝑀
M21 M𝑝𝑚 … M2𝑀
⋮ ⋮ ⋱ ⋮

M𝑃 1 M𝑃2 … M𝑃𝑀

⎤

⎥

⎥

⎥

⎥

⎦

. (10)

3.3.1. A numerical data structure example
Let us assume a simple wide data set, DS, that is 12 by 16, where

the number of observed samples are 𝑁 = 12 and the number of
features is 𝐻 = 16. The data set structure consists of three modalities
(𝐺 = 3), where Mod1 has 8 feature (𝐿1 = 8), Mod2 has 4 features
(𝐿2 = 4) and Mod3 has 4 features (𝐿3 = 4). The response variables have
weakly supported ground truth that are assigned one of the four class
assignments {𝜃1}, {𝜃2}, {𝜃3}, and {𝜃4}. We define this data structure
as,

DS =
[

𝐿1=8
⏞⏞⏞
𝐌𝐨𝐝𝟏

𝐿2=4
⏞⏞⏞
𝐌𝐨𝐝𝟐

𝐿3=4
⏞⏞⏞
𝐌𝐨𝐝𝟑 𝐑

]

=
[

𝒇 (1−8) 𝒇 (9−12) 𝒇 (13−16) 𝐑
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒇 1
⏞⏞⏞

0.37

𝒇 2
⏞⏞⏞

0.18

𝒇 3
⏞⏞⏞

0.61

𝒇 4
⏞⏞⏞

0.66

𝒇 5
⏞⏞⏞

0.39

𝒇 6
⏞⏞⏞

0.73

𝒇 7
⏞⏞⏞

0.12

𝒇 8
⏞⏞⏞

0.25 …
0.95 0.30 0.17 0.31 0.27 0.77 0.71 0.41 …
0.73 0.52 0.07 0.52 0.83 0.07 0.76 0.76 …
0.60 0.43 0.95 0.55 0.36 0.36 0.56 0.23 …
0.16 0.29 0.97 0.18 0.28 0.12 0.77 0.08 …
0.16 0.61 0.81 0.97 0.54 0.86 0.49 0.29 …
0.06 0.14 0.30 0.78 0.14 0.62 0.52 0.16 …
0.87 0.29 0.10 0.94 0.80 0.33 0.43 0.93 …
0.60 0.37 0.68 0.89 0.07 0.06 0.03 0.81 …
0.71 0.46 0.44 0.60 0.99 0.31 0.11 0.63 …
0.02 0.79 0.12 0.92 0.77 0.33 0.03 0.87 …
0.97 0.20 0.50 0.09 0.20 0.73 0.64 0.80 …

…

𝒇 9
⏞⏞⏞

0.81

𝒇 10
⏞⏞⏞

0.32

𝒇 11
⏞⏞⏞

0.91

𝒇 12
⏞⏞⏞

0.84

𝒇 13
⏞⏞⏞

0.34

𝒇 14
⏞⏞⏞

0.35

𝒇 15
⏞⏞⏞

0.55

𝒇 16
⏞⏞⏞

0.24

𝐑
⏞⏞⏞

𝜃3
… 0.90 0.52 0.24 0.32 0.11 0.73 0.69 0.97 𝜃4
… 0.32 0.70 0.14 0.19 0.92 0.90 0.65 0.39 𝜃3
… 0.11 0.36 0.49 0.04 0.88 0.89 0.22 0.89 𝜃2
… 0.23 0.97 0.99 0.59 0.26 0.78 0.71 0.63 𝜃1
… 0.43 0.96 0.24 0.68 0.66 0.64 0.24 0.79 𝜃3
… 0.82 0.25 0.67 0.02 0.82 0.08 0.33 0.50 𝜃4
… 0.86 0.50 0.76 0.51 0.56 0.16 0.75 0.58 𝜃1
… 0.01 0.30 0.24 0.23 0.53 0.90 0.65 0.49 𝜃3
… 0.51 0.28 0.73 0.65 0.24 0.61 0.85 0.20 𝜃4
… 0.42 0.04 0.37 0.17 0.09 0.01 0.66 0.72 𝜃2
… 0.22 0.61 0.63 0.69 0.90 0.10 0.57 0.28 𝜃3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

For the above DS, 𝑀 = 50 sensors models are created using 𝐷𝑚, an
organized subset of features from DS. This is reorganized as a deep
copy data structure,

D𝐶 = [𝐷1, 𝐷2,… , 𝐷𝑀−1, 𝐷50], (11)

here D𝐶 contains 50 data structures associated with their respective
0 sensor models. This allows us to account for high dimensionality
y using small models that span the features space. For the simplicity
f this example, we will only discuss 𝐷1 and 𝐷2 and use a reduced
bservations-to-features ratio of 3:1. However, note that in practical
pplications this ratio should at minimum be in the range of 5:1
hrough 20:1. Based the quasi-random sampling scheme for 𝐷 , as
𝑚
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discussed in Section 3.2.1, we sample 2 features from Mod1, 1 feature
from Mod2, and 1 feature from Mod3. Thus, we form

𝐷1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒇 5
⏞⏞⏞

0.39

𝒇 6
⏞⏞⏞

0.73

𝒇 12
⏞⏞⏞

0.84

𝒇 14
⏞⏞⏞

0.35
0.27 0.77 0.32 0.73
0.83 0.07 0.19 0.90
0.36 0.36 0.04 0.89
0.28 0.12 0.59 0.78
0.54 0.86 0.68 0.64
0.14 0.62 0.02 0.08
0.80 0.33 0.51 0.16
0.07 0.06 0.23 0.90
0.99 0.31 0.65 0.61
0.77 0.33 0.17 0.01
0.20 0.73 0.69 0.10

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐷2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒇 3
⏞⏞⏞

0.61

𝒇 5
⏞⏞⏞

0.39

𝒇 9
⏞⏞⏞

0.81

𝒇 14
⏞⏞⏞

0.35
0.17 0.27 0.90 0.73
0.07 0.83 0.32 0.90
0.95 0.36 0.11 0.89
0.97 0.28 0.23 0.78
0.81 0.54 0.43 0.64
0.30 0.14 0.82 0.08
0.10 0.80 0.86 0.16
0.68 0.07 0.01 0.90
0.44 0.99 0.51 0.61
0.12 0.77 0.42 0.01
0.50 0.20 0.22 0.10

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (12)

Using 𝐷1 as an exemplar, we construct the augmentation of the
response variables using the combinations 𝑋8 and 𝑋9. In practical
applications, we suggest to expand to a larger set of combinations
and examine the performance of NAPS Fusion with different balanced
variations. Utilizing these augmented response combinations, 𝐷1 will
help generate two augmented response data sets 𝐷𝑝𝑚 via Eq. (8). These
𝐷𝑝𝑚 are

𝐷81 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒇 5
⏞⏞⏞
0.39

𝒇 6
⏞⏞⏞
0.73

𝒇 12
⏞⏞⏞
0.84

𝒇 14
⏞⏞⏞
0.35

{⋅}+
⏞⏞⏞⏞⏞
{𝜃2, 𝜃3}+

0.27 0.77 0.32 0.73 {𝜃1, 𝜃4}+

0.83 0.07 0.19 0.90 {𝜃2, 𝜃3}+

0.36 0.36 0.04 0.89 {𝜃2, 𝜃3}+

0.28 0.12 0.59 0.78 {𝜃1, 𝜃4}+

0.54 0.86 0.68 0.64 {𝜃2, 𝜃3}+

0.14 0.62 0.02 0.08 {𝜃1, 𝜃4}+

0.80 0.33 0.51 0.16 {𝜃1, 𝜃4}+

0.07 0.06 0.23 0.90 {𝜃2, 𝜃3}+

0.99 0.31 0.65 0.61 {𝜃1, 𝜃4}+

0.77 0.33 0.17 0.01 {𝜃2, 𝜃3}+

0.20 0.73 0.69 0.10 {𝜃2, 𝜃3}+

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐷91 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒇 5
⏞⏞⏞
0.39

𝒇 6
⏞⏞⏞
0.73

𝒇 12
⏞⏞⏞
0.84

𝒇 14
⏞⏞⏞
0.35

{⋅}+
⏞⏞⏞

{𝜃3}+

0.27 0.77 0.32 0.73 {𝜃4}+

0.83 0.07 0.19 0.90 {𝜃3}+

0.36 0.36 0.04 0.89 {𝜃1, 𝜃2}+

0.28 0.12 0.59 0.78 {𝜃1, 𝜃2}+

0.54 0.86 0.68 0.64 {𝜃3}+

0.14 0.62 0.02 0.08 {𝜃4}+

0.80 0.33 0.51 0.16 {𝜃1, 𝜃2}+

0.07 0.06 0.23 0.90 {𝜃3}+

0.99 0.31 0.65 0.61 {𝜃4}+

0.77 0.33 0.17 0.01 {𝜃1, 𝜃2}+

0.20 0.73 0.69 0.10 {𝜃3}+

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(13)

where the augmented response variables are provided in the last col-
umn. The original responses are mapped to augmented responses using
Eq. (8), where for

𝐷81(1) ∶ 𝑅1 = 𝜃3 ↦ {𝜃2, 𝜃3}+,

𝐷81(2) ∶ 𝑅2 = 𝜃4 ↦ {𝜃1, 𝜃4}+,

𝐷91(1) ∶ 𝑅1 = 𝜃3 ↦ {𝜃3}+,

91(2) ∶ 𝑅2 = 𝜃4 ↦ {𝜃4}+.

hese newly formed 𝐷𝑝𝑚 data sets will be used to train and test the
odels M81 and M91. We can note how each 𝑛th sample incorporates

ts respective 𝑅𝑛 response variable within the augmented response
ombination. This allows the models to relax the boundary constraints
or the various augmented response combinations.

.4. ML model development for body of evidence (BoE)

For such an evidence fusion approach, we are constrained to specific
ypes of ML models that may not generalize well to probabilistic
rameworks. We avoid this issue by utilizing a bagging approach,
lso known as bootstrap aggregation. A bagging approach not only
mproves the stability and accuracy of the ML model (reducing high
ariance/uncertainty) for the statistical classification but can be easily
hought of as a probability structure. The typical bagging approach sub-
amples the observations of M𝑝𝑚’s vector space, 𝑇 times, using sampling
ith replacement (typically around 60% of the data). Therefore, for
ach M𝑝𝑚, we essentially create 𝑇 ‘‘micro-models’’, since M𝑝𝑚 is already
subspace of the original data set. The 𝑇 models are trained and

roduce a frequency for each time a class was chosen as the predicted
lass and could be thought of as a simplistic probability structure.

Therefore, each BoE can eventually be formed into probabilistic
21

‘supports’’ that are obtained from the outputs of each ML model’s, M𝑝𝑚,
Fig. 3. A data structure representation reconstructed data set, 𝐷𝑝𝑚𝑣, for sensor models
M), response combinations (P), and Cross-Validation (V).

hat are associated to Table 2. Therefore, for each M𝑝𝑚 the output is
tilized to provide ‘‘supports’’ that are linked to {⋅}+ and {P}𝑐 elements
ithin the power set defined by,

𝑝𝑚(𝑛) =
[

𝑉1 𝑉2 ⋯ 𝑉(𝑃−2)
]𝑇 , (14)

here 𝑉𝑖 is the number of votes from the bagged ML model from 𝑇
otal votes, {⋅}+ and {P}𝑐 are where the ‘‘supports’’ are given for the
lements linked to the specific 𝑉𝑖 elements within 𝑉𝑝𝑚(𝑛) for sample n
ithin the data set. When 𝑉𝑖 = 0 that element within V𝑝𝑚(𝑛) will not be
focal element for that specific data set instance, 𝐷𝑝𝑚(𝑛),

.5. Expanding the data structure for Cross-Validation

For our implemented framework, we only explored binary aug-
ented response variable models and the classical 4-class problem

combinations 1–8 in Table 2), where the total number of combinations
s 𝑃 = 8. Cases 1–8 were utilized to explore the extreme cases of
odeling ignorance versus the classical approach. This expands our
efinition of Eq. (3), to be two-dimensional where the deep copy data
tructure element 𝐷𝑚 is expanded to 𝐷𝑝𝑚 where 𝑝 is a combination
f the response variable and 𝑃 is the total number of combinations.
ugmenting the response is critical to understanding its impact on the
umber of observations within your newly formed classes. Depend-
ng on the combinations that are chosen as your response variables
{{𝜃1, 𝜃3, 𝜃4}, {𝜃2}}), the class imbalances within the ML paradigm will
mprove or can severely worsen. In order to attenuate this issue of
he class imbalances causing model bias, 𝛩2, Synthetic Minority Over-
ampling Technique (SMOTE) is dynamically implemented for each
ndividualized matrix, 𝐷𝑝𝑚 [32–34]. If a cross-validation (C.V.) ap-
roach is used in which the data is partitioned (C.V. was applied to this
tudy), the deep copy data structure is expanded to three dimensions,
here 𝐷𝑝𝑚 is expanded to 𝐷𝑝𝑚𝑣 (see in Fig. 3).

. Naive Adaptive Probabilistic Sensor (NAPS) fusion methodol-
gy

.1. Generalizing ML frameworks for DST

The proposed framework can be applied to any ML approach that
utputs probabilities, distances, or a voting paradigm in which conflict
nd ‘‘support’’ can be measured between different propositions within
single form of evidence (i.e., an ML model). The NAPS framework

tacks the DS framework over many ML models, which requires the
utputs of the ML model to fit within a DS Framework, where a basic
robability assignment (BPA), otherwise referred to as a mass assignment,
s created in which contextual considerations (e.g., source reliability,
ource conflicts, etc.) all play a role in determining the mass to be
llocated to a given proposition 𝐴𝑖 [18]. The mass assignment is a
unction of 𝑚 ∶ 2𝛺 → [0, 1], where 2𝛺 is the power set, such that

(∅) = 0;
∑

𝑚(𝐴𝑖) = 1. (15)

𝐴𝑖⊆2𝛺
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Fig. 4. This block diagram outlines the major steps within NAPS fusion that enable the modeling approach to overcome dimensionality hurdles, potential ambiguous class labels
uring training, improve modality for new sensors, and adapt to each sample independently, allowing for improved subject-to-subject variability.
ny proposition that is allocated a non-zero mass is referred to as a
ocal element. The core F refers to the set of focal elements and the
oE E refers to the triplet {𝛩,F, 𝑚(⋅)}. Each 𝐴𝑖 within E is linked to
combination of the response variable produced by the output of
𝑝𝑚, which P combinations are created by augmenting the responses.

hese augmented response variables and their respective predictive
ariables are placed into an ML paradigm, shown in Fig. 3, leading
o its own BoE created by M𝑝𝑚 individual models. The complete set
f models are created by 𝑀 feature sets (or sensor models, where
= 175) and 𝑃 combinations of the response variables (or augment

esponses). This produces 𝑀 × 𝑃 individual models, M𝑃𝑀 , defined
n Eq. (10). Dempster’s combination rule (DCR) allows one to combine

or fuse evidence represented as DST models [35]:

𝑚(𝐴) =

∑

𝐵∩𝐶=𝐴
𝑚1(𝐵)𝑚2(𝐶)

1 −
∑

𝐵∩𝐶=∅
𝑚1(𝐵)𝑚2(𝐶)

, (16)

here E1 = {𝛺,F1, 𝑚1(⋅)} and E2 = {𝛺,F2, 𝑚2(⋅)} are the BoEs being
used to generate the fused BoE E = {𝛺,F, 𝑚(⋅)}. The fused mass and
oE generated by the DCR are usually denoted by 𝑚 = 𝑚1 ⊕ 𝑚2 and
= E1⊕E2, respectively. The DCR is commutative and associative, thus

llowing one to fuse multiple sources of evidence with ease. In order
o apply DCR, we have properly designed a mass function to quantify
he uncertainty and support of the propositions.

.2. Mass allocation and uncertainty assignment

In order to fully develop a BPA from a BoE (i.e. M𝑝𝑚), an uncertainty
ssignment is required to utilize the DST framework approach. The
ncertainty assignment is obtained by accounting for two factors: (1)
he uncertainty on the contextual meaning of the decision; (2) The
ncertainty of the model biasing for the augmented classes. Once the
ncertainty is calculated for the specific model, we are able to re-update
he ‘‘supports’’ for the model and complete the BPA from the BoE. These
PA are then selected and combined to determine the final supports for
specific instance within the data.
22
Fig. 5. A visualization of the uncertainty space.

4.2.1. Uncertainty on the contextual meaning of the decision

We obtain contextual meaning based on the frequency of each class.
This provides informative context for predicting a specific class based
on which T models were reported as the predicted class within the
bagging. For example, if we have four classes and 100 models and
receive 25 votes for each class, we become very uncertain about the
appropriate class to pick. Thus, the model for this specific instance is
unreliable. Standard ensemble methods do not contextualize the model
within the voting and strictly count the amount of votes [36] and do
not look at conflict between the propositions within the model and
across models. The model, M𝑝𝑛, when compared to model M𝑝(𝑚+1) that
handles a different set of sensors, may have a different amount of
conflict. Fusing these models together can be thought of as a way to
easily perform a pseudo method of model averaging, which weights
each model differently according to the uncertainty assignment.

Thus, we aim to model this uncertainty through the normalized
bagging voting space, where 𝑇𝑇 𝑜𝑡 is the total number of votes (bags
in the model) and 𝑇𝑐 is the number of tallied votes received for the
𝑐th class where C is the total number of classes defined by the 𝑥𝑖
combination variation, shown in Table 2. Therefore, we can define a
bounded vector space defined by the number of potential classes the
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ML model is built around (this is independent on the number of focal
elements) and the amount of votes each hypothesis received by

𝛩1 = 1 −

√

(

𝑇1
𝑇𝑇 𝑜𝑡

− 1
𝐶

)2
+⋯ +

(

𝑇𝐶
𝑇𝑇 𝑜𝑡

− 1
𝐶

)2

√

𝐶 − 1
𝐶

. (17)

Eq. (17) is visually depicted in Fig. 5, where, if all the proportions of
the votes are approximately equal, the uncertainty assignment operates
near the maximum uncertainty region in red. Conversely, if the votes
are highly disproportional and there is a dominating proposition, the
uncertainty operates near the edges of the vector space where the
minimum uncertainty resides.

4.2.2. Uncertainty of the biased model
Model uncertainty is also altered when class imbalances are imposed

on the model by the data. When classes are imbalanced, the model will
tend to favor the majority class more (the prior). Therefore, similar
to the previous uncertainty assignment, this adds additional doubt as
to the model’s ability to perform. Although SMOTE can be applied
to address the class imbalance, the approach is not always able to
fully rectify the class imbalance, and the samples are still synthetic
instances. Therefore, we use the original data sets for our uncertainty
assignment to address the class imbalance issues. The imbalance of the
class depends on the proportion of the number of instances that occur
for the class, 𝐼𝑐 , over the total instances in the data set, 𝐼𝑇 𝑜𝑡. Thus,
quantifying the uncertainty associated to an imbalance for a multi-class
problem is defined as,

𝛩2 =

√

(

𝐼1
𝐼𝑇 𝑜𝑡

− 1
𝐶

)2
+⋯ +

(

𝐼𝐶
𝐼𝑇 𝑜𝑡

− 1
𝐶

)2

√

𝐶 − 1
𝐶

. (18)

4.2.3. Accounting for total uncertainty
The total uncertainty, 𝛩, for the BoE is calculated by simply taking

the mean of the two methods that account for the uncertainty in the
BoE through,

𝑚(𝛺) = 1 − 𝑒

− 1
2 (𝛩1 + 𝛩2)

𝑑
1 − 𝑒−1∕𝑑

(19)

where 𝑑 determines the exponential weighting of the distance in the
uncertainty space by

𝑑 = (𝑒1−𝜌 − 1)𝑒(1), (20)

and 𝜌 is the hyperparameter that determines the strength of the expo-
nential weighing. The hyperparameter 𝜌 is bounded [0,1]. When 𝜌 = 0
the function is nearly linear and as 𝜌 approaches 1 the function expo-
nentially grows. We allocate the mass across the full set of propositions
𝑚(𝐴𝑖) over 𝑇𝑇 𝑜𝑡 votes and arrive at the following DST model:

𝑚(𝐴) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

V𝑝𝑚(𝑛)
𝑇𝑇 𝑜𝑡

⋅ (1 − 𝑚(𝛺)), for 𝐴 = 𝑉𝑖;

1 − 𝑒

− 1
2 (𝛩1 + 𝛩2)

𝑑
1 − 𝑒−1∕𝑑

, for 𝐴 = 𝛺;

0, otherwise.

(21)
23

⎩

𝛩

4.3. Model selection

Due to the nature of DST’s framework and cognitive state experi-
ments, developing a model requires synergy for it to work well with
the psychophysiology data and for us to fuse models together. Since
the sensors (subsets of features) were generated randomly, not all
the sensors will capture the appropriate amount of variance to be a
strong predictor. In addition, a top-performing sensor may no longer
be the sensor for a different response combination (a different augment
class). Similar to how the uncertainty adapts and varies across the
samples, the sensors used for each combination of the model should
also adapt. In order to accomplish this, we took a simplistic approach
where we utilized the six sensors with the lowest uncertainty for
each response combination. Therefore, if we implement an all-vs-one
method (Response Combinations 2–5), each response combination has
six sensors that are combined, producing 24 different models for the
decision process. All the selected models are combined to account for
a large feature space, thus acting like a larger complex model.

An all-vs-one approach is a simplistic and contemporary approach
that uses a binarization strategy, where we build a binary response
model for each class [37]. The generated combinatorial responses for
M2𝑚 to M5𝑚 are utilized {{𝜃1, 𝜃2, 𝜃3}, {𝜃4}}, {{𝜃1, 𝜃2, 𝜃4}, {𝜃3}}, {{𝜃1, 𝜃3,
𝜃4}, {𝜃2}}, or {{𝜃2, 𝜃3, 𝜃4}, {𝜃1}}. All the models are evaluated and the
one with the highest probability is the predicted class [38]. This
addresses the problem with ignorance but the problem of feature
importance and dimensionality reduction still exists. For instance,
when you have a four-class, classic singleton case we would generate
{𝜃1}, {𝜃2}, {𝜃3}, {𝜃4}. However, for a non-traditional one-vs-all ML
framework design, we would generate combinatorial responses such
as {{𝜃1, 𝜃2, 𝜃3}, {𝜃4}}, or {{𝜃1, 𝜃2, 𝜃4}, {𝜃3}}, or {{𝜃1, 𝜃3, 𝜃4}, {𝜃2}}, or
{𝜃2, 𝜃3, 𝜃4}, {𝜃1}}. We then evaluated which key features for the model

will be analyzed and how models perform over these combinational
patterns.

5. A numerical fusion example

Data and Mass Assignment for E1: Let us consider the first body of
vidence, E1, with the data set 𝐷9𝑚1 to predict the 𝑛th sample of data
sing sensor model, 𝑆𝑚, where the response variable from the data
et is 𝑅𝑛 = {𝜃3} for a 10-fold cross validation problem and 𝜌 = 0.
he response variable, 𝑅𝑛, is mapped to the response combination 𝑋9,
reated by

9𝑚(𝑛)
def
=

⟨

𝑆𝑚(𝐷𝑚(𝑛))
𝑅𝑛
 ←←←←←←←←←←←←←→ 𝑋9

⟩

,

here 𝑋9
def
=

{

{⋅}+, {P}𝑐
}

, the positive class {⋅}+
def
= {𝜃3}, and the

ompliment sets are {P}𝑐
def
= {{𝜃1, 𝜃2}, {𝜃4}}. Let us consider a random

orest bagging algorithm that produces that V𝑝𝑚(𝑛) where 𝑃 = 14 and
= 150, producing a set of potential propositions,

9𝑚(𝑛) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑉1
⋮
𝑉3
𝑉4
⋮
𝑉8
⋮
𝑉14

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{𝜃1}
⋮

{𝜃1, 𝜃2}
{𝜃3}
⋮

{𝜃4}
⋮

{𝜃2, 𝜃3, 𝜃4}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
⋮
100
25
⋮
25
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

hus, we define the focal elements within E1 as {𝜃1, 𝜃2}, {𝜃3}, and {𝜃4}.
ased on the class labels of the ML training data set 𝐷9𝑚(2−𝑉 ), our
amples for each class of the labels are perfectly balanced where 𝐼1 =
000, 𝐼2 = 1000, and 𝐼3 = 1000 producing no uncertainty with respect
o a class imbalance in the model, 𝛩2 = 0. Regarding the uncertainty
f the decision boundaries of the model, based on V9𝑚1(𝑛) we produce

1 = .5. Therefore, utilizing Eq. (21), we define the body of evidence’s



Information Fusion 91 (2023) 15–30N.J. Napoli et al.

d

w

c
b
p

V

T
B
s
1
i
t
𝛩
u
a

a
b
i
a

a
l
{
c
s

𝐵

a

𝐵

F

𝐵

a

𝐵

F

𝐵

𝐵

a

𝐵

F

𝐵

𝐵

a

𝐵

F

𝐵

a

𝐵

F

𝐵

a

𝐵

F

𝐵

a

𝐵

a

Table 3
Reduced mass assignment.
𝑚1(⋅) 2|𝛺| Proposition 𝑚2(⋅)

0.4854 𝑉3 {𝜃1 , 𝜃2} 0
0.1214 𝑉4 {𝜃3} 0
0 𝑉6 {𝜃2 , 𝜃3} 0.2037
0.1214 𝑉8 {𝜃4} 0
0 𝑉9 {𝜃1 , 𝜃4} 0.2037
0.2719 𝛺 {𝜃1 , 𝜃2 , 𝜃3 , 𝜃4} 0.5927

Table 4
Reduced combination.

E𝟏
∩ 𝑉3 𝑉4 𝑉8 𝛺

E
𝟐

𝑉6 {𝜃2} {𝜃3} ∅ {𝜃2 , 𝜃3}
𝑉9 {𝜃1} ∅ {𝜃4} {𝜃1 , 𝜃4}
𝛺 {𝜃1 , 𝜃2} {𝜃3} {𝜃4} 𝛺

uncertainty as 𝑚(𝛺) = .2719 and our focal elements mass assignment as
𝑚(𝑉3) = 0.4854, 𝑚(𝑉4) = 0.1214, and 𝑚(𝑉8) = 0.1214.

Data and Mass Assignment for E2: Now let us consider a secondary
body of evidence, E2, with the data set 𝐷8𝑚1 to predict the 𝑛th sample
of data using sensor model, 𝑆𝑚, where the response variable from the
ata set is 𝑅𝑛 = {𝜃3} for a 10-fold cross validation problem and 𝜌 = 0.

The response variable, 𝑅𝑛, is mapped to the response combination 𝑋8,
created by

𝐷8𝑚(𝑛)
def
=

⟨

𝑆𝑚(𝐷𝑚(𝑛))
𝑅𝑛
 ←←←←←←←←←←←←←→ 𝑋8

⟩

,

here 𝑋8
def
=

{

{⋅}+, {P}𝑐
}

, the positive class {⋅}+
def
= {𝜃2, 𝜃3}, and the

ompliment sets are {P}𝑐
def
= {𝜃1, 𝜃4}. Let us consider a random forest

agging algorithm that produces that V𝑝𝑚(𝑛) where 𝑃 = 14 and 𝑇 = 150,
roducing a set of potential propositions,

9𝑚(𝑛) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑉1
⋮
𝑉6
⋮
𝑉9
⋮
𝑉14

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

{𝜃1}
⋮

{𝜃2, 𝜃3}
⋮

{𝜃1, 𝜃4}
⋮

{𝜃2, 𝜃3, 𝜃4}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
⋮
75
⋮
75
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

hus, we define the focal elements within E2 as {𝜃2, 𝜃3}, and {𝜃1, 𝜃4}.
ased on the class labels of the ML training data set 𝐷9𝑚(2−𝑉 ), our
amples for each of the class labels are perfectly balanced where 𝐼1 =
700 and 𝐼2 = 1300, producing no uncertainty with respects to a class
mbalance in the model, 𝛩2 = .1333. Regarding the uncertainty of
he decision boundaries of the model, based on V9𝑚1(𝑛) we produce
1 = 1. Therefore, utilizing Eq. (21), we define the body of evidence’s
ncertainty as 𝑚(𝛺) = 0.5927 and our focal elements mass assignment
s 𝑚(𝑉6) = 0.2037, and 𝑚(𝑉9) = 0.2037.
Fusion of E1 and E2: Denoting the mass assignment of E1 as 𝑚1

nd that of E2 as 𝑚2, the values obtained from each BoE can be fused
y using DCR given in Eq. (16). A summary of the mass assignments
s given in Table 3 and the intersections of the propositions for the
pplication of DCR are provided in Table 4.

Utilizing the intersections of these propositions in Table 4, we are
ble to proceed with the DCR calculation. Thus, within the DCR calcu-
ation we will update the support for {𝜃1}, {𝜃2}, {𝜃3}, {𝜃4}, {𝜃1, 𝜃2},
𝜃2, 𝜃3}, {𝜃1, 𝜃4}, and 𝛺, where non-focal elements are omitted. All
alculated mass assignments are summarized in Table 5. Let us first
tart up updating the support for {𝜃1}, where we have

∩ 𝐶 = 𝑉3 ∩ 𝑉9 = {𝜃1}

⟹ 𝑚1(𝑉3)𝑚2(𝑉9) = 0.0989
24

𝐵

nd
∑

∩𝐶={𝜃1}
𝑚1(𝐵)𝑚2(𝐶) = 0.0989.

or {𝜃2}, we have

∩ 𝐶 = 𝑉3 ∩ 𝑉6 = {𝜃2}

⟹ 𝑚1(𝑉3)𝑚2(𝑉6) = 0.0989

nd
∑

∩𝐶={𝜃2}
𝑚1(𝐵)𝑚2(𝐶) = 0.0989.

or {𝜃3}, we have

∩ 𝐶 = 𝑉4 ∩ 𝑉6 = {𝜃3}

⟹ 𝑚1(𝑉4)𝑚2(𝑉6) = 0.0247

∩ 𝐶 = 𝑉4 ∩𝛺 = {𝜃3}

⟹ 𝑚1(𝑉4)𝑚2(𝛺) = 0.0720.

nd
∑

∩𝐶={𝜃3}
𝑚1(𝐵)𝑚2(𝐶) = 0.0967.

or {𝜃4}, we have

∩ 𝐶 = 𝑉8 ∩ 𝑉9 = {𝜃4}

⟹ 𝑚1(𝑉8)𝑚2(𝑉9) = 0.0247,

∩ 𝐶 = 𝑉8 ∩𝛺 = {𝜃4}

⟹ 𝑚1(𝑉8)𝑚2(𝛺) = 0.0720.

nd
∑

∩𝐶={𝜃4}
𝑚1(𝐵)𝑚2(𝐶) = 0.0967.

or {𝜃1, 𝜃2}, we have

∩ 𝐶 = 𝑉3 ∩𝛺 = {𝜃1, 𝜃2}

⟹ 𝑚1(𝑉3)𝑚2(𝛺) = 0.2877.

nd
∑

∩𝐶={𝜃1 ,𝜃2}
𝑚1(𝐵)𝑚2(𝐶) = 0.2877.

or {𝜃1, 𝜃4}, we have

∩ 𝐶 = 𝛺 ∩ 𝑉9 = {𝜃1, 𝜃4}

⟹ 𝑚1(𝛺)𝑚2(𝑉9) = 0.0554.

nd
∑

∩𝐶={𝜃1 ,𝜃4}
𝑚1(𝐵)𝑚2(𝐶) = 0.0554.

or {𝜃2, 𝜃3}, we have

∩ 𝐶 = 𝛺 ∩ 𝑉6 = {𝜃2, 𝜃3}

⟹ 𝑚1(𝛺)𝑚2(𝑉6) = 0.0554.

nd
∑

∩𝐶={𝜃2 ,𝜃3}
𝑚1(𝐵)𝑚2(𝐶) = 0.0554.

Finally, for 𝛺, we have

𝐵 ∩ 𝐶 = 𝛺 ∩𝛺 = 𝛺

⟹ 𝑚1(𝛺)𝑚2(𝛺) = 0.1610.

nd
∑

𝑚1(𝐵)𝑚2(𝐶) = 0.1610.

∩𝐶=𝛺
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Table 5
Mass assignment after fusion.
2|𝛺| 𝑚(⋅)

{𝜃1} 0.1040
{𝜃2} 0.1040
{𝜃3} 0.3027
{𝜃4} 0.1017
{𝜃1 , 𝜃2} 0.0583
{𝜃1 , 𝜃4} 0.1017
{𝜃2 , 𝜃3} 0.0583
𝛺 0.1696

All that remains is to calculate the null set of the DCR calculation
hich is associated to the denominator

−
∑

𝐵∩𝐶=∅
𝑚1(𝐵)𝑚2(𝐶). (22)

For {∅}, we have

∩ 𝐶 = 𝑉8 ∩ 𝑉6 = {∅}

⟹ 𝑚1(𝑉8)𝑚2(𝑉6) = 0.0247,

𝐵 ∩ 𝐶 = 𝑉4 ∩ 𝑉9 = {∅}

⟹ 𝑚1(𝑉4)𝑚2(𝑉9) = 0.0247.

Therefore,
∑

𝐵∩𝐶=∅
𝑚1(𝐵)𝑚2(𝐶) = 0.4940,

and

1 −
∑

𝐵∩𝐶=∅
𝑚1(𝐵)𝑚2(𝐶) = 0.9505.

6. Results

In this section, we address the following research questions regard-
ing the use case of implementing Naive Adaptive Probabilistic Sensor
Fusion for a more generalized ML framework to handle experimental
study data for machine computer interaction:

RQ1 How do typical dimensionality reduction methods perform on our
multi-class problems with small samples, class imbalances, and
large features?

RQ2 How does dimensionality reduction combined with augmented
response perform?

RQ3 As we address these issues caused by uncertainty, how does
performance for these ML paradigms change utilizing a NAPS
framework?

6.1. RQ1: Dimensionality reduction for multi-class problems

We implement an assortment of various dimensionality reduction
methods in order to evaluate if adequate lift in the ML performance is
evident to justify dimensionality reduction. The dimensionality reduc-
tion methods implemented were various combinations of autoencoder
frameworks (i.e., number of nodes and layers) and activation functions.
Typical methods such as PCA were deemed unnecessary to imple-
ment since a single layer (SL) linear activation function is strongly
comparable to PCA. To create a one-to-one comparison against the
proposed NAPS framework, SMOTE was also implemented to these
higher dimensionality problems to improve class imbalances.

Baseline Performance. Prior to implementing the dimensional reduc-
tion experiments, we obtained a baseline by simply examining the
performance before we implemented any dimensionality reduction.
Considering our concerns about how dimensionality reduction methods
25
Table 6
RF (𝐴𝑐 = 68.37%).

Predicted
𝜃1 𝜃2 𝜃3 𝜃4

Ac
tu
al

𝜃1 632 24 6 1
𝜃2 93 24 1 0
𝜃3 124 5 3 0
𝜃4 43 2 0 0

Table 7
RF & SMOTE (𝐴𝑐 = 61.37%).

Predicted
𝜃1 𝜃2 𝜃3 𝜃4

Ac
tu
al

𝜃1 512 71 68 12
𝜃2 59 52 5 2
𝜃3 95 13 21 3
𝜃4 32 6 4 3

Table 8
SL autoencoders.

Autoencoder size Function Accuracy Function Accuracy

70 logSig 55.63% SatLin 54.07%
60 logSig 55.94% SatLin 53.03%
50 logSig 57.51% SatLin 51.57%
40 logSig 55.21% SatLin 54.28%
32 logSig 55.63% SatLin 50.42%
24 logSig 56.47% SatLin 50.51%
16 logSig 56.36% SatLin 50.93%
8 logSig 52.29% SatLin 48.84%
5 logSig 48.23% SatLin 42.49%

Table 9
SL autoencoder LogSig (𝐴𝑐 = 57.51%).

Predicted
𝜃1 𝜃2 𝜃3 𝜃4

Ac
tu
al

𝜃1 465 79 82 37
𝜃2 49 52 12 5
𝜃3 74 16 33 9
𝜃4 27 3 14 1

may actually hurt performance by capturing irrelevant information,
we took two baselines: one experiment with strictly the raw data
(SMOTE was not implemented) and the implementation of SMOTE
with the Random Forest Algorithm (RF) with 150 bags. Table 6 is
the confusion matrix and accuracy (𝐴𝑐 = 68.37%) for applying an
RF algorithm to the raw data set. Utilizing RF and SMOTE together,
Table 7, demonstrates a drop in performance accuracy. However, if
you examine the confusion matrix in Table 6, the precision and recall
is very poor for the other classes (𝜃2, 𝜃3, 𝜃4). Thus, we can note how
SMOTE improves performance for minority classes by adjusting the
class imbalances.

Single Layer Autoencoders. To address this research question, we
first started with a single-layer autoencoder framework, where we ran
experiments using two different activation functions and nine different
neural network (NN) node architectures. The random forest algorithm
with 150 bags was implemented on these reduced feature sets from
the autoencoders. Table 8, provides the averaged accuracy over 5-fold
cross-validation for each NN architecture and activation function. These
two activation functions essentially allowed us to compare how linear
and non-linear manifolds may increase accuracy. We can note that
across all the NN architectures (autoencoder size/nodes), the non-linear
activation function (logsig) provides an increase in performance down-
stream. In Table 9, we provide the confusion matrix for autoencoder
with 50 nodes that utilized the ‘‘logsig’’ activation function, which was
then stacked with a random forest providing an accuracy of 57.51% for
the four-class problem. However, when compared to Table 7, the most
accurate autoencoder, which used the same RF paradigm, still performs
the worst across all classes.
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Table 10
Deep network architectures.

Layer 1 size Layer 2 size Function Accuracy

220 8 logSig 51.77%
180 16 logSig 53.13%
100 32 logSig 54.27%
85 45 logSig 52.82%
120 64 logSig 53.44%

Table 11
Deep network (𝐴𝑐 = 54.27%).

Predicted
𝜃1 𝜃2 𝜃3 𝜃4

Ac
tu
al

𝜃1 453 72 107 31
𝜃2 58 38 16 6
𝜃3 73 22 28 9
𝜃4 29 8 7 1

Deep Networks. The dimensionality reduction experiments were then
xtended for designing two-layer autoencoders with a third soft layer
sed to train on the feature set. A simulation was done to test various
ombinations of the NN architecture, where combination of the first
ayer consisted of 220, 180, 120, 100, or 85 nodes, and the second
ayer consisted of combinations of 8, 16, 32, 45, or 64. This produced
5 different architectures. In Table 10, we provide the most accurate
rchitecture for each second layer combination, where Table 11 is the
onfusion matrix for the highest performing architecture. As shown
n the table, the current deep architectures are one of the lowest
erforming models.
RQ1 Takeaway. There was not a single dimensionality reduction

ethod that provided a better lift in performance when compared
o the baseline approach. We hypothesize that because of subject-to-
ubject variability within the experimental data, this causes anomalous
atterns in the feature space, which cannot be generalized or clustered
s relevant information through an unsupervised fashion [39]. Thus,
hen it comes to human performance data, it is innate for these
nsupervised dimensionality reduction methods to capture irrelevant
nformation for their new projections of the feature space.

.2. RQ2: Dimensionality reduction combined with augmented response
ariables

In this subsection, we aim to address how the combination of
implified response variables would allow us to better handle the
parsity of the wide data for increased performance. We addressed
his issue by applying upsampling using SMOTE, augmenting the re-
ponse variable, and reducing the dimensionality (feature space). The
ugmented response variable approach we utilized is the all-vs-one
pproach. Thus, four-model binary models are designed, and we took
he highest singleton probability as the predicted class. In Table 12,
e once again examine the different NN encoder architectures and
ctivation functions, where we achieved a tie for the best performance
or a 128 and 64 node autoencoder using the nonlinear activation
unction. Note that there is an approximate 5% increase in performance
ompared to the previous method, which did not augment the response
ariable. In addition, the nonlinear activation function out-performed
he linear activation. In Table 13, we provide the confusion matrix
or the single layer 64 nodes autoencoder using the ‘‘logsig’’ activation
unction.

However, based on our findings with RQ2 and our hypothesis from
RQ1 that dimensionality reduction is capturing irrelevant information
for this human performance data. Thus, it behooved us to also remove
the autoencoder from the ML design approach for further analysis.
This is supported by Table 14 which demonstrates an increase in
performance accuracy when compared to the other all-vs-one methods,
26

n

Table 12
SL autocoders & RF all-vs-one.

Autoencoder size Function Accuracy Function Accuracy

185 logSig 61.17% SatLin 55.63%
128 logSig 62.84% SatLin 55.94%
64 logSig 62.84% SatLin 57.51%
32 logSig 60.55% SatLin 55.21%
16 logSig 57.82% SatLin 55.63%
8 logSig 54.17% SatLin 56.47%

Table 13
Single layer encoder (64 Vars.) Utilizing a
random forest all-vs-one structure (𝐴𝑐 =
62.84%).

Predicted
𝜃1 𝜃2 𝜃3 𝜃4

Ac
tu
al

𝜃1 522 54 65 22
𝜃2 57 44 15 2
𝜃3 85 11 33 3
𝜃4 30 4 8 3

Table 14
Raw data set utilizing random forest all-vs-
one structure (𝐴𝑐 = 64.91%).

Predicted
𝜃1 𝜃2 𝜃3 𝜃4

Ac
tu
al

𝜃1 543 57 53 10
𝜃2 59 54 2 3
𝜃3 96 14 21 1
𝜃4 34 4 6 1

Table 13. In addition, there is also a slight performance increase from
the original baseline model using SMOTE, Table 7.

RQ2 Takeaway. Once again, we demonstrated that unsupervised
dimensionality reduction decreased the performance. However, when
strictly comparing the approach of augmenting the response variable
(i.e., All-vs-One) to the original baseline in Table 7, we can note a
slight increase in overall accuracy. Thus, by augmenting the response
variable, we can aid in the uncertainty of the model by reducing the
sparsity of the data set. However, the model performance is not optimal
because of the large feature space the model is forced to cover.

6.3. RQ3: NAPS fusion approach

Baseline. From RQ2, we stated that we can improve the performance
of the model if the feature space is reduced. We first examined a
framework that uses the top-performing six random forest (RF) models
(6 different subspaces in the feature space) that span the feature space.
The predicted classes of each model are reported and tallied for a
committee vote to determine the predicted class. In Table 15, we
can note a significant increase in the predictive performance when
compared to the models in RQ1 and RQ2. Simply through deductive
easoning, we can attribute this performance increase to the small
eature set and combination of features sets (sensors). This claim can
e supported by examining how high dimensionality and low samples
egatively alter classification performance and the SMOTE Algorithm.
n order to increase the dimensionality of a classification problem,
he number of training samples must increase as well. Otherwise, the
lassifier performance will decrease. When training samples are fixed,
nd dimensionality increases, the density of the training sample within
he vector space will exponentially decrease. This lack of density in
he feature space or sparsity imposes uncertainty on the model since
e become uncertain as to whether the classification boundary set

s correct. In addition, this affects how we attempt to increase the
inor training samples by using SMOTE. SMOTE works on the nearest
eighbor algorithm, and if our vector space is too sparse, the nearest
eighbor algorithms begin to break down since the distances between
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Table 15
4 class committee voting model (𝐴𝑐 = 83.04%).

Predicted
𝜃1 𝜃2 𝜃3 𝜃4

Ac
tu
al

𝜃1 659 1 0 0
𝜃2 74 43 1 0
𝜃3 49 6 77 0
𝜃4 31 3 9 2

the adjacent neighbors are pushed to new hyperplanes as the dimen-
sionality increases with fixed sample size. Therefore, we are able to
properly apply SMOTE to increase the sample size. However, utilizing
a small subspace within the feature space (a sensor) should enhance
SMOTE’s capabilities.

NAPS Fusion Approach (Tripleton Set). Comparing the baseline classi-
cal approach in Table 15 which utilizes small models that strictly utilize
the original response variable labels (a four-class problem, referred
to as the 𝑋1 response combination) that span the feature space, we
emonstrated a significant lift in the predictive performance. However,
tilizing the NAPS Fusion approach, we simplify the model’s decision
oundaries by augmenting the response variable into tripleton sets
i.e., 𝑋2, 𝑋3, 𝑋4, and 𝑋5). This all-vs-one approach augments the
esponse variable, allowing for a more generalizable ML model to fit
he data, which then can be later combined using fusion to examine
he supports strictly for the four classes. In addition to this augmented
esponse variable case (where we originally had high dimensionality,
ow samples, and class imbalance modeling issues), we instantaneously
reate more data by merging the responses together and reducing the
parsity vector space, allowing us to use SMOTE for improved model
erformance as well.

The NAPS Fusion approach’s sensor selection paradigm is critical
ince we randomly generated 175 models for each combination of
esponses variables (a total of 7 different combinations variations 𝑋2
o 𝑋8). Thus, we had 1225 models to choose from, but we only used
4 of them for these reported results. From each response combination,
𝑝, we picked the best six models with the lowest uncertainty. Thus, the
APS Fusion approach combines only the best six sensors for each 𝑋𝑝,
hich then fuses these models together, shown in Table 16. Once again,
e note an even larger significant improvement from the baseline

ommittee voting approach (from 83.04% to 95.29% accuracy, as well
s the precision and recall) that is compared to using the best six models
ithin the 𝑋1 original response variable labels. This demonstrates the
ower that the NAPS Fusion framework has to improve the classifi-
ation performance through smaller models and augmented response
ariables.
NAPS Fusion Approach (Doubleton Set). We now approach the prob-

em from the perspective that we have ambiguous class labels, leaving
s ignorant of the class label’s ‘‘true’’ ground truth. We utilize the
APS Fusion approach to address the augmented response variable

or doubleton sets (i.e., 𝑋6, 𝑋7, and 𝑋8). Typically, we are unable to
andle ignorance when we have conflicting class labels. However, our
roposed DS framework can handle this conflict and ambiguous labels.
imilarly, we use the best six models that each 𝑋𝑝 produces within the
ouble sets, yielding 18 models to fuse. In Table 17, we demonstrate
till a very high-performance accuracy of 𝐴𝑐 = 93.93% when multiple
lass doubleton class labels are formed to an ML paradigm and fused
ogether. This is an extremely critical aspect of human–machine inter-
ction research, especially when class labels taken from annotations
ormed by subject-matter experts are in disagreement. Thus, if one
ubject-matter expert labels the event as 𝜃1 and another subject-matter
xpert labels the event as 𝜃2, we can set the class label to train as a
oubleton set of {𝜃1, 𝜃2}. This enables us approach the ML framework
o combat issues of mixed states or state transitions within the data set.
RQ3 Takeaway. The NAPS Fusion framework provides a superior

ift in performance compared to other approaches. To elucidate on
27
the performance gains of NAPS Fusion, let us discuss how traditional
methods lack the key framework infrastructure that restricts the perfor-
mance potential of models within human data sets. This reduction of
performance is driven by an insufficient data structure and an inconsistent
statistical structure, which increases the uncertainty of traditional mod-
els, leading to poor classification. Through this discussion we highlight
how NAPS Fusion overcomes these limitations to improve classification
performance.

An insufficient data structure occurs when we have the combination
of three major data limitations present within a predictive model-
ing environment [40]. These three data limitations within the data
structure are: (1) high dimensionality of features which drives the
feature space to be sparse and degrades the effectiveness to measure
dissimilarity between samples; (2) low number of samples widen the
confidence interval of the estimated model parameter’s which increases
the uncertainty of the decision boundary; and (3) class imbalances
alter the prior of the model’s probability. When only one of these data
limitations is introduced there are several classical ways of manip-
ulating the data structure to produce a more sufficient data set for
the predictive model to learn. For example, when the issue of class
imbalances is only present within the data structure, we can adjust the
number of samples based on their class by re-sampling (down-sampling
or up-sampling) to correct the model’s biasing to avoid an inappro-
priate prior probability [41]. However, when an additional limitation
enters the data structure, the statistical ability to train the classifier
degrades from the increase of unhandled uncertainty entering into the
predictive paradigm. For instance, during a down-sampling paradigm
with low samples, the reduction of additional samples (i.e., obser-
vations) leads to wider confidence intervals of the estimated model
parameters which define the decision boundary. This creates a flexible
decision boundary that has a high uncertainty, causing inaccurate
model classification [28,42]. From an up-sampling perspective with
high dimensionality and low samples, as we can apply SMOTE a nearest
neighbor approach to improve the model bias, the high dimensionality
deteriorates the distance measurements for properly assessing similar-
ity [43]. The deterioration of the distance measurements is related to
the ‘‘curse of dimensionality’’ where, as dimensionality increases, the
distance measurements start to lose their meaning and effectiveness,
increasing the uncertainty for decision boundary [44–46]. This creates
inaccurate placement for new synthetic samples, thereby impacting the
learning for the classifier downstream. In conclusion, as the classifier
is introduced to more data structure limitations the potential for an
accurate and precise prediction becomes more unattainable.

With respect to insufficient data structures, NAPS Fusion framework
attenuates or potentially eliminates compounding negative implications
caused by targeting the limitations using DS theory. We first address the
high dimensionality of features by creating a multitude of small models
(e.g., small set of predictive features) that span the feature space. By
creating models from subsets that randomly span the original data
set, we convert a single high-dimensional problem into multiple low-
dimensional problems. The decisions resulting from the smaller models
are later fused by using DS theory to incorporate the additional pre-
dictive variables from adjacent subspaces (discussed in Section 3.2.2).
Through the use of smaller generalized models, we can form tighter
confidence intervals (i.e., reduced uncertainty) for the estimated model
parameters for an improved decision boundary. The second way DS
theory is leveraged to reduce uncertainty for the classifier is by utilizing
the property of ignorance. By exploiting the DS notion of ignorance, we
can merge classes into augmented response variables, which provide
more samples for training for a specific class (refer to Section 3.3).
The augmentation of the response variables also enables the model to
not be required to fit multiple classes, thus providing more generaliz-
able decision boundaries. This allows us to properly implement data
upsampling techniques, such as SMOTE, for every model to resolve

any remaining class imbalances at a lower dimensional feature space.
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Through the leveraging of these two DS theory properties, we apply
DS fusion to these small models that span the feature space to mimic
a high dimensionality through DS fusion. Due to the use of augmented
response variables, each model has an improved confidence interval
of the model’s estimated decision boundary (i.e., reduced model un-
certainty) for enhanced classification performance. It is important to
note that at this point within the model we are only leveraging the
DS framework to improve the uncertainty within the ML classifier by
augmenting the data structure. This is independent to how the DS
framework manages uncertainty and ignorance to improve the mass
allocation of its propositions which is later implemented.

The other modeling limitations stem from an inconsistent statistical
structure within the human performance data. An inconsistent statisti-
cal structure can occur when a particular set of samples do not follow
the same statistical boundary requirement of another set of samples
within the same dataset. However, both sets are linked to the same
class label. This occurs habitually within human subject data, where the
subject-to-subject variability greatly differs, preventing a generalized
predictive model to be deployed for the entire dataset. For example, as
depicted in Fig. 6, this can lead to an appropriate classification of the
sample for subject 1 when model 1 is deployed, but a misclassification
when model 1 is deployed on subject 2. Likewise, the inverse scenario
can occur when model 2 is applied to both subjects. More specifically,
the example in the figure demonstrates how two different subjects can
experience the same stimulus, like hypoxia (e.g., a change in their
environment such as a delivery of a drug, a stressor, etc.), but physio-
logically react differently. The different responses to a stimulus across
subjects can lead to uncertain model decision boundaries from subject
to subject. Therefore, no single classical model can be generalized to
the entire set of subjects. The issue of inconsistent statistical structures
within the data is further exacerbated by the high dimensionality of the
data. Commonly, we deploy dimensionality reduction methods on the
data like autoencoders and principal component analysis (PCA) to learn
more complex projections of the data at a lower dimensional feature
space. Despite their widespread use, dimensionality reduction methods
like PCA and autoencoders do not always map to a lower dimensional
space appropriately. For example in PCA, higher-order principal com-
ponents can mainly consist of noise or irrelevant information [39].
This tends to occur when the features that are required to be extracted
are from a minority class (i.e., subset of subjects responds a specific
way) and cannot be extracted from maximizing the variance [47,48].
Within literature, this tends to occur when PCA maximizes the variance
of the features of the majority class, causing the minority class to be
neglected [47,48]. This translation between minor and majority class
is analogous to our study when subject-to-subject variability occurs
within the data, where specific subsets of subjects respond differently
to a stimulus. Thus, a subset of subjects will have improper mappings
for their principles components, because the PCA maximization of
the variance was biased to the more popular response to the stimuli
(e.g., similar to the majority issue in literature). Similarly, autoencoders
are created with the sole purpose of compressing data into a reduced
latent space, while disregarding information on the variability of the
data set. Therefore, when trained on wide data sets with significant
subject-to-subject variability, autoencoders create a static model that
scales poorly on subsets of the data set that exhibit a high degree of
variability. In essence, the autocoder captures the ‘‘average’’ of the
dataset such that it performs well on the entire dataset [49]. This
explains why the use of dimensionality reduction methods, like au-
toencoders or PCA, within our experimental data greatly underperforms
when compared to the findings solely utilizing the raw data. This can
be seen when comparing the raw data performance in Tables 14 and
15 to the autoencoder performance in Table 13.

To address subject-to-subject variability and high data dimension-
ality, NAPS Fusion allows us to span the feature space at a higher
28

dimension by fusing multiple small models, with the major caveat that
Table 16
NAPS fusion model (𝐴𝑐 = 95.29%) tripleton
set or all-vs-one response combination.

Predicted
𝜃1 𝜃2 𝜃3 𝜃4

Ac
tu
al

𝜃1 658 1 1 0
𝜃2 0 118 0 0
𝜃3 0 5 127 0
𝜃4 23 3 12 7

Table 17
NAPS fusion utilizing ambiguous class labels
(𝐴𝑐 = 93.93% Doubleton Set).

Predicted
𝜃1 𝜃2 𝜃3 𝜃4

Ac
tu
al

𝜃1 659 1 1 0
𝜃2 1 117 0 0
𝜃3 5 10 116 1
𝜃4 23 10 7 5

the framework will naively adapt to each specific sample (i.e., adapting
to a subject’s stimulus response). This naive adaptation accounts for the
subject-to-subject variability within the full dataset through a dynamic
weighting of models based on the uncertainty assignment (discussed
in Section 4.3). The models with higher uncertainty are weighted less
by NAPS Fusion for certain samples/subjects and weighted higher for
models with lower uncertainty, which naively accounts for subject-to-
subject variability. This explains the additional increases in classifica-
tion performance for NAPS Fusion when compared to the committee
voting classification paradigm in Tables 15 and 16.

NAPS Fusion opens up the discussion of various methods that could
be implemented to improve the model selection, fusion of models, and
dimensionality reduction of wide data sets. As we know, there is no
‘‘free lunch’’ when it comes to machine learning. The computational
complexity of the DS framework becomes exponentially higher as the
number of classes increase. However, the need to implement a DS
fusion framework not only demonstrates superior classification perfor-
mance, but also allows us to properly manage ambiguities in the class
label.

7. Conclusion

Many cognitive performance experiments for human–machine inter-
action produce a small sample size, have large class imbalances, and
have a high dimensionality feature space. Typically, we are faced with
machine learning problems that have one or two of these data limi-
tations simultaneously. However, when all three of these constraints
occur, the standard approaches for handling each problem individually
essentially fail. For instance, class imbalances could be handled by
down-sampling our data to adjust for imbalance in the classes, but we
do not have enough data for down-sampling. Conversely, we can up-
sample by using SMOTE, but as we discussed and demonstrated, the
benefits of SMOTE degrade when we have a low amount of samples
and high dimensionality. In addition, we can try to address the problem
by applying dimensionality reduction methods, but they are unable to
capture relevant information, most likely due to the small sample size,
class imbalances, and subject-to-subject variability.

The NAPS Fusion framework addresses how we can overcome these
experimental data issues and ML challenges. NAPS accomplishes this
through appropriate model selection, uncertainty assignment, augmen-
tation of the response variable, and fusion of sensors that span the
feature space that allow SMOTE not only to adjust for original class
imbalances but also for the imbalances created by the augmented
response variables. The fusion of the models is done at each sam-
ple, and the uncertainty calculation therefore adapts and weights the
impact of the output of the model across the top 6 models within
𝑋 and 𝑋 response combinations. The work presented utilizes
𝑃 𝑃+𝑘
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Fig. 6. The condition responses for two subjects using two distinct bagged models are shown here. The averaged decision boundary is shown as a gray line and the distance
rom sample 𝐷𝑚(𝑛) to the decision boundary is shown in black. The ground truth labels are denoted by circles (non-hypoxic) and triangles (hypoxic), while the classification
abels are denoted by the colors green (non-hypoxic) and red (hypoxic). A mismatch in the color and shape of the label (subject 1, model 2 and subject 2, model 1) examplifies

misclassification of a data sample driven by subject-to-subject variability. In addition to this figure demonstrating subject-to-subject variablity, it also visually describes how a
odel is weighted differently across samples, 𝐷𝑚(𝑛) and 𝐷𝑚(𝑛 + 1). A bagged model’s inability to clearly define the votes of the winning class will create a higher uncertainty for

these specific samples (more on this in Section 4.3). These particular samples of higher uncertainty will tend to be closer to the decision boundary. Therefore, our uncertainty
is an indirect measurement of the distance of the samples to the averaged decision boundary of the bagged model. This uncertainty measurement will alter the weights of the
models with highly conflicting votes that are potential weak predictors for a specific subject’s response to their stimuli. For example, when predicting hypoxia for subject 2, NAPS
Fusion weights model 1 significantly less than model 2 to reduce the impact of models 1’s missclassifcation (i.e., high conflict). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
DCR as a means of fusion and is one of the most rudimentary fusion
algorithms, which opens up research areas for exploring methods for
more optimal model fusion paradigms, and model selection methods.
This DS approach for combining models under NAPS opens the door
for cognitive performance research to move forward into open-world
environments, where class label conflict occurs frequently. Further,
it could potentially reduce costs associated with experimental hu-
man data collection. Moreover, this framework provides an extremely
modular design, where new models and hardware modalities can be
interchanged easily without tuning and training from ground zero,
enabling new data sets to be amended to an original study design.
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